The objective of this study was to characterize the stability of KSL-W, an antimicrobial decapeptide shown to inhibit the growth of oral bacterial strains associated with caries development and plaque formation, and its potential as an antiplaque agent in a chewing gum formulation. KSL-W formulations with or without the commercial antibacterial agent cetylpyridinium chloride (CPC) were prepared. The release of KSLW from the gums was assessed in vitro using a chewing gum apparatus and in vivo by a chew-out method. A reverse-phase high-performance liquid chromatography method was developed for assaying KSL-W. Raw material stability and temperature and pH effects on the stability of KSL-W solutions and interactions of KSL-W with tooth-like material, hydroxyapatite discs, were investigated. KSL-W was most stable in acidic aqueous solutions and underwent rapid hydrolysis in base. It was stable to enzymatic degradation in human saliva for 1 hour but was degraded by pancreatic serine proteases. KSL-W readily adsorbed to hydroxyapatite, suggesting that it will also adsorb to the teeth when delivered to the oral cavity. The inclusion of CPC caused a large increase in the rate and extent of KSL-W released from the gums. The gum formulations displayed promising in vitro/in vivo release profiles, wherein as much as 90% of the KSL-W was released in a sustained manner within 30 minutes in vivo. These results suggest that KSL-W possesses the stability, adsorption, and release characteristics necessary for local delivery to the oral cavity in a chewing gum formulation, thereby serving as a novel antiplaque agent.

Development of a peptide containing chewing gum as a sustained release antiplaque antimicrobial delivery system

SCHOUBBEN, Aurelie Marie Madeleine;
2007

Abstract

The objective of this study was to characterize the stability of KSL-W, an antimicrobial decapeptide shown to inhibit the growth of oral bacterial strains associated with caries development and plaque formation, and its potential as an antiplaque agent in a chewing gum formulation. KSL-W formulations with or without the commercial antibacterial agent cetylpyridinium chloride (CPC) were prepared. The release of KSLW from the gums was assessed in vitro using a chewing gum apparatus and in vivo by a chew-out method. A reverse-phase high-performance liquid chromatography method was developed for assaying KSL-W. Raw material stability and temperature and pH effects on the stability of KSL-W solutions and interactions of KSL-W with tooth-like material, hydroxyapatite discs, were investigated. KSL-W was most stable in acidic aqueous solutions and underwent rapid hydrolysis in base. It was stable to enzymatic degradation in human saliva for 1 hour but was degraded by pancreatic serine proteases. KSL-W readily adsorbed to hydroxyapatite, suggesting that it will also adsorb to the teeth when delivered to the oral cavity. The inclusion of CPC caused a large increase in the rate and extent of KSL-W released from the gums. The gum formulations displayed promising in vitro/in vivo release profiles, wherein as much as 90% of the KSL-W was released in a sustained manner within 30 minutes in vivo. These results suggest that KSL-W possesses the stability, adsorption, and release characteristics necessary for local delivery to the oral cavity in a chewing gum formulation, thereby serving as a novel antiplaque agent.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/126281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact