The objective of this study was to compare the in vitro behavior of four long-acting subcutaneous ris- peridone formulations with in vivo performance, with the intent of establishing an IVIVC. Two copolymers of PLGA (50:50 and 75:25) were used to prepare four microsphere formulations of risperidone, an atypical antipsychotic. In vitro behavior was assessed at the physiological temperature (37 °C) using the ‘modified dialysis’ technique. The in vitro release profile demon- strated rank order behavior with Formulations A and B, prepared using the 50:50 copolymer, exhibiting rapid drug release, while Formulations C and D, prepared using 75:25 PLGA, released drug in a slower manner. In vivo profiles were obtained by two approaches, i.e., deconvo- lution using the Nelson–Wagner equation (the FDA rec- ommended approach) and using fractional AUC. With both in vivo approaches, the 50:50 PLGA preparations released drug faster than the 75:25 PLGA microspheres, exhibiting the same rank order observed in vitro. Addi- tionally, profiles for the four formulations obtained using the deconvolution approach were nearly superimposable with fractional AUC, implying that the latter procedure could be used as a substitute for the Nelson–Wagner method. A comparison of drug release profiles for the four formulations revealed that in three of the four formula- tions, in vivo release was slightly faster than that in vitro, but the results were not statistically significant (P [ 0.0001). An excellent linear correlation (R2 values between 0.97 and 0.99) was obtained when % in vitro release for each formulation was compared with its cor- responding in vivo release profile, obtained by using fraction absorbed (Nelson–Wagner method) or fractional AUC. In summary, using the four formulations that exhibited different release rates, a Level A IVIVC was established using the FDA-recommended deconvolution method and fractional AUC approach. The excellent relationship between in vitro drug release and the amount of drug absorbed in vivo in this study was corroborated by the nearly 1:1 correlation (R2 greater than 0.97) between in vitro release and in vivo performance. Thus, the results of the current study suggest that proper selection of an in vitro method to assess drug release from long-acting injectables will aid in obtaining a Level A IVIVC.

IN VITRO IN VIVO CORRELATION FROM LACTIDE-CO-GLYCOLIDE POLYMERIC DOSAGE FORMS

GIOVAGNOLI, Stefano;
2014

Abstract

The objective of this study was to compare the in vitro behavior of four long-acting subcutaneous ris- peridone formulations with in vivo performance, with the intent of establishing an IVIVC. Two copolymers of PLGA (50:50 and 75:25) were used to prepare four microsphere formulations of risperidone, an atypical antipsychotic. In vitro behavior was assessed at the physiological temperature (37 °C) using the ‘modified dialysis’ technique. The in vitro release profile demon- strated rank order behavior with Formulations A and B, prepared using the 50:50 copolymer, exhibiting rapid drug release, while Formulations C and D, prepared using 75:25 PLGA, released drug in a slower manner. In vivo profiles were obtained by two approaches, i.e., deconvo- lution using the Nelson–Wagner equation (the FDA rec- ommended approach) and using fractional AUC. With both in vivo approaches, the 50:50 PLGA preparations released drug faster than the 75:25 PLGA microspheres, exhibiting the same rank order observed in vitro. Addi- tionally, profiles for the four formulations obtained using the deconvolution approach were nearly superimposable with fractional AUC, implying that the latter procedure could be used as a substitute for the Nelson–Wagner method. A comparison of drug release profiles for the four formulations revealed that in three of the four formula- tions, in vivo release was slightly faster than that in vitro, but the results were not statistically significant (P [ 0.0001). An excellent linear correlation (R2 values between 0.97 and 0.99) was obtained when % in vitro release for each formulation was compared with its cor- responding in vivo release profile, obtained by using fraction absorbed (Nelson–Wagner method) or fractional AUC. In summary, using the four formulations that exhibited different release rates, a Level A IVIVC was established using the FDA-recommended deconvolution method and fractional AUC approach. The excellent relationship between in vitro drug release and the amount of drug absorbed in vivo in this study was corroborated by the nearly 1:1 correlation (R2 greater than 0.97) between in vitro release and in vivo performance. Thus, the results of the current study suggest that proper selection of an in vitro method to assess drug release from long-acting injectables will aid in obtaining a Level A IVIVC.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1268497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact