A new definition is introduced for the matrix geometric mean of a set of k positive definite n×n matrices together with an iterative method for its computation. The iterative method is locally convergent with cubic convergence and requires O(n 3 k 2) arithmetic operations per step whereas the methods based on the symmetrization technique of Ando et al. (Linear Algebra Appl 385:305–334, 2004) have complexity O(n 3 k!2 k ). The new mean is obtained from the properties of the centroid of a triangle rephrased in terms of geodesics in a suitable Riemannian geometry on the set of positive definite matrices. It satisfies most part of the ten properties stated by Ando, Li and Mathias; a counterexample shows that monotonicity is not fulfilled.
A note on computing Matrix Geometric Means
IANNAZZO, Bruno
2011
Abstract
A new definition is introduced for the matrix geometric mean of a set of k positive definite n×n matrices together with an iterative method for its computation. The iterative method is locally convergent with cubic convergence and requires O(n 3 k 2) arithmetic operations per step whereas the methods based on the symmetrization technique of Ando et al. (Linear Algebra Appl 385:305–334, 2004) have complexity O(n 3 k!2 k ). The new mean is obtained from the properties of the centroid of a triangle rephrased in terms of geodesics in a suitable Riemannian geometry on the set of positive definite matrices. It satisfies most part of the ten properties stated by Ando, Li and Mathias; a counterexample shows that monotonicity is not fulfilled.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.