Cyclic dipeptides (CDPs) are a group of hormone-like molecules that are evolutionarily conserved from bacteria to humans. In bacteria, CDPs are used in quorum sensing (QS) to communicate information about population size and to regulate a behavioural switch from symbiosis with their host to virulence. In mammals, CDPs have been shown to act on glial cells (macrophage-like cells) to control a conceptually homologous behavioural switch between homeostatic and inflammatory modes, with implications for the control of neurodegenerative disease. Here we argue that, because of their capacity to regulate inflammation via glial cells and induce a protective response in neuronal cells, CDPs have potential therapeutic utility in an array of inflammatory diseases.

Cyclic dipeptides: from bugs to brain.

BELLEZZA, ILARIA;PEIRCE, MATTHEW JOHN;MINELLI, Alba
2014

Abstract

Cyclic dipeptides (CDPs) are a group of hormone-like molecules that are evolutionarily conserved from bacteria to humans. In bacteria, CDPs are used in quorum sensing (QS) to communicate information about population size and to regulate a behavioural switch from symbiosis with their host to virulence. In mammals, CDPs have been shown to act on glial cells (macrophage-like cells) to control a conceptually homologous behavioural switch between homeostatic and inflammatory modes, with implications for the control of neurodegenerative disease. Here we argue that, because of their capacity to regulate inflammation via glial cells and induce a protective response in neuronal cells, CDPs have potential therapeutic utility in an array of inflammatory diseases.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1321104
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 86
social impact