Risk assessment and treatment choice remain a challenge in early non-small-cell lung cancer (NSCLC). Alternative splicing is an emerging source for diagnostic, prognostic and therapeutic tools. Here, we investigated the prognostic value of the actin cytoskeleton regulator hMENA and its isoforms, hMENA(11a) and hMENA Delta v6, in early NSCLC. The epithelial hMENA(11a) isoform was expressed in NSCLC lines expressing E-CADHERIN and was alternatively expressed with hMENA Delta v6. Enforced expression of hMENA Delta v6 or hMENA(11a) increased or decreased the invasive ability of A549 cells, respectively. hMENA isoform expression was evaluated in 248 node-negative NSCLC. High pan-hMENA and low hMENA(11a) were the only independent predictors of shorter disease-free and cancer-specific survival, and low hMENA(11a) was an independent predictor of shorter overall survival, at multivariate analysis. Patients with low pan-hMENA/high hMENA(11a) expression fared significantly better (P <= 0.0015) than any other subgroup. Such hybrid variable was incorporated with T-size and number of resected lymph nodes into a 3-class-risk stratification model, which strikingly discriminated between different risks of relapse, cancer-related death, and death. The model was externally validated in an independent dataset of 133 patients. Relative expression of hMENA splice isoforms is a powerful prognostic factor in early NSCLC, complementing clinical parameters to accurately predict individual patient risk.
Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer
LUDOVINI, VIENNA;VANNUCCI, JACOPO;BELLEZZA, Guido;SIDONI, Angelo;CRINO', Lucio;
2014
Abstract
Risk assessment and treatment choice remain a challenge in early non-small-cell lung cancer (NSCLC). Alternative splicing is an emerging source for diagnostic, prognostic and therapeutic tools. Here, we investigated the prognostic value of the actin cytoskeleton regulator hMENA and its isoforms, hMENA(11a) and hMENA Delta v6, in early NSCLC. The epithelial hMENA(11a) isoform was expressed in NSCLC lines expressing E-CADHERIN and was alternatively expressed with hMENA Delta v6. Enforced expression of hMENA Delta v6 or hMENA(11a) increased or decreased the invasive ability of A549 cells, respectively. hMENA isoform expression was evaluated in 248 node-negative NSCLC. High pan-hMENA and low hMENA(11a) were the only independent predictors of shorter disease-free and cancer-specific survival, and low hMENA(11a) was an independent predictor of shorter overall survival, at multivariate analysis. Patients with low pan-hMENA/high hMENA(11a) expression fared significantly better (P <= 0.0015) than any other subgroup. Such hybrid variable was incorporated with T-size and number of resected lymph nodes into a 3-class-risk stratification model, which strikingly discriminated between different risks of relapse, cancer-related death, and death. The model was externally validated in an independent dataset of 133 patients. Relative expression of hMENA splice isoforms is a powerful prognostic factor in early NSCLC, complementing clinical parameters to accurately predict individual patient risk.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.