Covalent sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) has been performed using two approaches, direct and indirect cycloaddition through diethyl malonate, based on the Bingel reaction. The results revealed that functionalized MWCNTs demonstrated enhanced electrical properties and significantly lower sheet resistance, especially after electric field thermal assisted annealing at 80 °C was performed. The presence of 1,3-dicarbonyl compounds caused the surface of MWCNTs to be more hydrophilic, approachable for the electrolyte and improved the capacitance performance of Au/MWCNTs electrodes. The modified MWCNTs have been incorporated into nanocomposites by using solution mixing method with polyaniline and drop-casting resulting mixture on the paper substrate. The reduction in the sheet resistance with increasing the content of MWCNTs in the prepared nanocomposite films has been achieved.
Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction
VALENTINI, LUCA;
2015
Abstract
Covalent sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) has been performed using two approaches, direct and indirect cycloaddition through diethyl malonate, based on the Bingel reaction. The results revealed that functionalized MWCNTs demonstrated enhanced electrical properties and significantly lower sheet resistance, especially after electric field thermal assisted annealing at 80 °C was performed. The presence of 1,3-dicarbonyl compounds caused the surface of MWCNTs to be more hydrophilic, approachable for the electrolyte and improved the capacitance performance of Au/MWCNTs electrodes. The modified MWCNTs have been incorporated into nanocomposites by using solution mixing method with polyaniline and drop-casting resulting mixture on the paper substrate. The reduction in the sheet resistance with increasing the content of MWCNTs in the prepared nanocomposite films has been achieved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.