N-Aryl-5-aminopyrazole represents a key structural motif in a plethora of biologically active molecules endowed with a wide spectrum of pharmacological properties. Accordingly, this scaffold can be certainly included in the category of a privileged structure. As an example, N-aryl-5- aminopyrazole along with its 5-ureido derivatives are recurrent scaffolds in the field of inhibition of the different members of mitogen-activated protein kinases (MAPKs). Over the past recent years a large number of papers highlighting the design, synthesis and biological evaluation of different classes of N-aryl-5-aminopyrazole-containing compounds have been reported in the literature, but a review on this topic is still missing. With the aim to fill this gap, the present review article focuses on the recent developments (1995-mid2014) on the application of the N-aryl-5-aminopyrazole-based compounds in different therapeutic fields, with a particular attention to the design and structure-activity relationships (SAR) aspects of each class of compounds.

N-Aryl-5-aminopyrazole: A Versatile Architecture in Medicinal Chemistry

MARINOZZI, Maura;CAROTTI, Andrea
2015

Abstract

N-Aryl-5-aminopyrazole represents a key structural motif in a plethora of biologically active molecules endowed with a wide spectrum of pharmacological properties. Accordingly, this scaffold can be certainly included in the category of a privileged structure. As an example, N-aryl-5- aminopyrazole along with its 5-ureido derivatives are recurrent scaffolds in the field of inhibition of the different members of mitogen-activated protein kinases (MAPKs). Over the past recent years a large number of papers highlighting the design, synthesis and biological evaluation of different classes of N-aryl-5-aminopyrazole-containing compounds have been reported in the literature, but a review on this topic is still missing. With the aim to fill this gap, the present review article focuses on the recent developments (1995-mid2014) on the application of the N-aryl-5-aminopyrazole-based compounds in different therapeutic fields, with a particular attention to the design and structure-activity relationships (SAR) aspects of each class of compounds.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1344406
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact