Glyoxalase I (Glo1) is a cellular defense enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modification of protein arginines, is a proapoptotic agent. Crystalline silica is a well-known occupational health hazard, responsible for a relevant number of pulmonary diseases. Exposure of cells to crystalline silica results in a number of complex biological responses, including apoptosis. The present study was aimed at investigating whether, and through which mechanism, Glo1 was involved in Min-U-Sil 5 crystalline silica-induced apoptosis. Apoptosis, by TdT-mediated dUTP nick-end labeling assay, and transcript and protein levels or enzymatic activity, by quantitative real-time PCR, Western blot, and spectrophotometric methods, respectively, were evaluated in human bronchial BEAS-2B cells exposed or not (control) to crystalline silica and also in experiments with appropriate inhibitors. Reactive oxygen species were evaluated by coumarin-7-boronic acid or Amplex red hydrogen peroxide/peroxidase methods for peroxynitrite (ONOO-) or hydrogen peroxide (H2O2) measurements, respectively. Our results showed that Min-U-Sil 5 crystalline silica induced a dramatic ONOO--mediated inhibition of Glo1, leading to AP-modified Hsp70 protein accumulation that, in a mechanism involving JNK and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of Glo1 occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and miRNA 101 involvement. Taken together, our data demonstrate that Glo1 is involved in the Min-U-Sil 5 crystalline silica-induced BEAS-2B cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp70, JNK, and NF-κB. Because maintenance of an intact respiratory epithelium is a critically important determinant of normal respiratory function, the knowledge of the mechanisms underlying its disruption may provide insight into the genesis, and possibly the prevention, of a number of pathological conditions commonly occurring in silica dust occupational exposure.

Peroxynitrite-mediated glyoxalase I epigenetic inhibition drives apoptosis in airway epithelial cells exposed to crystalline silica via a novel mechanism involving Argpyrimidine-modified Hsp70, JNK and NF-kB

ANTOGNELLI, Cinzia;GAMBELUNGHE, Angela;MUZI, Giacomo;TALESA, Vincenzo Nicola
2015

Abstract

Glyoxalase I (Glo1) is a cellular defense enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modification of protein arginines, is a proapoptotic agent. Crystalline silica is a well-known occupational health hazard, responsible for a relevant number of pulmonary diseases. Exposure of cells to crystalline silica results in a number of complex biological responses, including apoptosis. The present study was aimed at investigating whether, and through which mechanism, Glo1 was involved in Min-U-Sil 5 crystalline silica-induced apoptosis. Apoptosis, by TdT-mediated dUTP nick-end labeling assay, and transcript and protein levels or enzymatic activity, by quantitative real-time PCR, Western blot, and spectrophotometric methods, respectively, were evaluated in human bronchial BEAS-2B cells exposed or not (control) to crystalline silica and also in experiments with appropriate inhibitors. Reactive oxygen species were evaluated by coumarin-7-boronic acid or Amplex red hydrogen peroxide/peroxidase methods for peroxynitrite (ONOO-) or hydrogen peroxide (H2O2) measurements, respectively. Our results showed that Min-U-Sil 5 crystalline silica induced a dramatic ONOO--mediated inhibition of Glo1, leading to AP-modified Hsp70 protein accumulation that, in a mechanism involving JNK and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of Glo1 occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and miRNA 101 involvement. Taken together, our data demonstrate that Glo1 is involved in the Min-U-Sil 5 crystalline silica-induced BEAS-2B cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp70, JNK, and NF-κB. Because maintenance of an intact respiratory epithelium is a critically important determinant of normal respiratory function, the knowledge of the mechanisms underlying its disruption may provide insight into the genesis, and possibly the prevention, of a number of pathological conditions commonly occurring in silica dust occupational exposure.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1344408
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact