This work focuses on the analysis of a new nanocomposite cement-based sensor (carbon nanotube cement-based sensor), for applications in vibration-based structural health monitoring of civil engineering structures. The sensor is constituted of a cement paste doped with multi-walled carbon nanotubes, so that mechanical deformations produce a measurable change of the electrical resistance. Prior work of some of the authors has addressed the fabrication process, dynamic behaviour and implementation to full-scale structural components. Here, we investigate the effectiveness of a linear lumped-circuit electromechanical model, in which dynamic sensing is associated with a strain-dependent modulation of the internal resistance. Salient circuit parameters are identified from a series of experiments where the distance between the electrodes is parametrically varied. Experimental results indicate that the lumped-circuit model is capable of accurately predicting the step response to a voltage input and its steady-state response to a harmonic uniaxial deformation. Importantly, the model is successful in anticipating the presence of a superharmonic component in sensor’s output.

Electromechanical modelling of a new class of nanocomposite cement-based sensors for structural health monitoring

D'ALESSANDRO, ANTONELLA;UBERTINI, Filippo
;
MATERAZZI, Annibale Luigi;
2015

Abstract

This work focuses on the analysis of a new nanocomposite cement-based sensor (carbon nanotube cement-based sensor), for applications in vibration-based structural health monitoring of civil engineering structures. The sensor is constituted of a cement paste doped with multi-walled carbon nanotubes, so that mechanical deformations produce a measurable change of the electrical resistance. Prior work of some of the authors has addressed the fabrication process, dynamic behaviour and implementation to full-scale structural components. Here, we investigate the effectiveness of a linear lumped-circuit electromechanical model, in which dynamic sensing is associated with a strain-dependent modulation of the internal resistance. Salient circuit parameters are identified from a series of experiments where the distance between the electrodes is parametrically varied. Experimental results indicate that the lumped-circuit model is capable of accurately predicting the step response to a voltage input and its steady-state response to a harmonic uniaxial deformation. Importantly, the model is successful in anticipating the presence of a superharmonic component in sensor’s output.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1345292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 43
social impact