The development of new experiments such as CLIC and the the foreseen Phase 2 pixel upgrades of ATLAS and CMS have very challenging requirements for the design of hybrid pixel readout chips, both in terms of performances and reliability. To face these challenges, the use of a more downscaled CMOS technology compared to previous projects is necessary. The CERN RD53 collaboration is undertaking a R&D programme to evaluate the use of a commercial 65 nm technology and to develop tools and frameworks which will help to design future pixel detectors. This paper gives a short overview of the RD53 collaboration activities and describes some examples of recent developments. The

65 nm Technology for HEP: Status and Perspective

CONTI, ELIA;MARCONI, SARA;PASSERI, Daniele;PLACIDI, Pisana;
2014

Abstract

The development of new experiments such as CLIC and the the foreseen Phase 2 pixel upgrades of ATLAS and CMS have very challenging requirements for the design of hybrid pixel readout chips, both in terms of performances and reliability. To face these challenges, the use of a more downscaled CMOS technology compared to previous projects is necessary. The CERN RD53 collaboration is undertaking a R&D programme to evaluate the use of a commercial 65 nm technology and to develop tools and frameworks which will help to design future pixel detectors. This paper gives a short overview of the RD53 collaboration activities and describes some examples of recent developments. The
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1353562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact