This paper proposes a review of several circuits for communication and wireless sensing applications implemented on cellulose-based materials. These circuits have been developed during the last years exploiting the adhesive copper laminate method. Such a technique relies on a copper adhesive tape that is shaped by a photo-lithographic process and then transferred to the hosting substrate (i.e., paper) by means of a sacrificial layer. The presented circuits span from UHF oscillators to a mixer working at 24 GHz and constitute an almost complete set of building blocks that can be applied to a huge variety communication apparatuses. Each circuit is validated experimentally showing performance comparable with the state-of-the-art. This paper demonstrates that circuits on cellulose are capable of operating at record frequencies and that ultra- low cost, green i.e., recyclable and biodegradable) materials can be a viable solution to realize high frequency hardware for the upcoming Internet of Things (IoT) era.

Communication and Sensing Circuits on Cellulose

ALIMENTI, Federico;MARIOTTI, CHIARA;PALAZZI, VALENTINA;VIRILI, MARCO;ORECCHINI, GIULIA;MEZZANOTTE, Paolo;ROSELLI, Luca
2015

Abstract

This paper proposes a review of several circuits for communication and wireless sensing applications implemented on cellulose-based materials. These circuits have been developed during the last years exploiting the adhesive copper laminate method. Such a technique relies on a copper adhesive tape that is shaped by a photo-lithographic process and then transferred to the hosting substrate (i.e., paper) by means of a sacrificial layer. The presented circuits span from UHF oscillators to a mixer working at 24 GHz and constitute an almost complete set of building blocks that can be applied to a huge variety communication apparatuses. Each circuit is validated experimentally showing performance comparable with the state-of-the-art. This paper demonstrates that circuits on cellulose are capable of operating at record frequencies and that ultra- low cost, green i.e., recyclable and biodegradable) materials can be a viable solution to realize high frequency hardware for the upcoming Internet of Things (IoT) era.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1354627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact