Bile acids are the end product of cholesterol metabolism. Synthesized in the liver, primary bile acids are secreted by hepatocytes and are transformed by intestinal microbiota into secondary bile acids. In addition to their role in cholesterol and lipid absorption, bile acids act as signaling molecules activating a family of nuclear and G-protein-coupled receptors collectively known as bile acid activated receptors (BARs). These receptors are expressed at high density in enterohepatic tissues, but their expression occurs throughout the body and their activation mediates regulatory functions of bile acids on lipids and glucose metabolism and immunity. In the gastrointestinal tract, BARs maintain intestinal integrity, and their deletion makes the intestine more susceptible to the damage caused by acetylsalicylic acid and nonsteroidal anti-inflammatory drugs (NSAIDs). Deficiency in farnesoid X receptor and G-protein-coupled bile acid receptor 1 genes alters the expression/activity of cystathione γ-lyase and endothelial nitric oxide synthase, two genes involved in the synthesis of hydrogen sulfide and nitric oxide, i.e., two gaseous mediators that have been shown to be essential in maintaining the intestinal homeostasis. In addition, farnesoid X receptor regulates the expression of transporters required for secretion of phospholipid by hepatocytes. Because phospholids attenuate intestinal injury caused by acetylsalicylic acid and NSAIDs, BAR agonism could be exploited to protect the intestinal mucosa against injury caused by anti-inflammatory medications. This approach might be useful in the prevention of so-called NSAID enteropathy, a common clinical condition occurring in long-term users of NSAIDs, which is not effectively prevented either by cotreatment with proton pump inhibitors or by the use of coxibs.

Bile acid activated receptors are targets for regulation of integrity of gastrointestinal mucosa

CIPRIANI, Sabrina;RENGA, Barbara;SCHIAROLI, ELISABETTA;Ricci, P;DONINI, Annibale;FIORUCCI, Stefano
2015

Abstract

Bile acids are the end product of cholesterol metabolism. Synthesized in the liver, primary bile acids are secreted by hepatocytes and are transformed by intestinal microbiota into secondary bile acids. In addition to their role in cholesterol and lipid absorption, bile acids act as signaling molecules activating a family of nuclear and G-protein-coupled receptors collectively known as bile acid activated receptors (BARs). These receptors are expressed at high density in enterohepatic tissues, but their expression occurs throughout the body and their activation mediates regulatory functions of bile acids on lipids and glucose metabolism and immunity. In the gastrointestinal tract, BARs maintain intestinal integrity, and their deletion makes the intestine more susceptible to the damage caused by acetylsalicylic acid and nonsteroidal anti-inflammatory drugs (NSAIDs). Deficiency in farnesoid X receptor and G-protein-coupled bile acid receptor 1 genes alters the expression/activity of cystathione γ-lyase and endothelial nitric oxide synthase, two genes involved in the synthesis of hydrogen sulfide and nitric oxide, i.e., two gaseous mediators that have been shown to be essential in maintaining the intestinal homeostasis. In addition, farnesoid X receptor regulates the expression of transporters required for secretion of phospholipid by hepatocytes. Because phospholids attenuate intestinal injury caused by acetylsalicylic acid and NSAIDs, BAR agonism could be exploited to protect the intestinal mucosa against injury caused by anti-inflammatory medications. This approach might be useful in the prevention of so-called NSAID enteropathy, a common clinical condition occurring in long-term users of NSAIDs, which is not effectively prevented either by cotreatment with proton pump inhibitors or by the use of coxibs.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1357949
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact