We present new upper bounds on the error probability of quaternary simplex signals in additive white Gaussian noise. The proposed upper bounds are simple to compute than the exact probability of error and are tighter than the existing bounds for any value of the signal-to-noise ratio. Some new lower bounds are also presented. As a side result, the proposed bounds can be easily extended to quaternary orthogonal signals, such as coherently detected frequency-shift keying and pulse-position modulation.

Tight Upper Bounds on the Probability of Error of Quaternary Simplex Signals

RUGINI, LUCA
2015

Abstract

We present new upper bounds on the error probability of quaternary simplex signals in additive white Gaussian noise. The proposed upper bounds are simple to compute than the exact probability of error and are tighter than the existing bounds for any value of the signal-to-noise ratio. Some new lower bounds are also presented. As a side result, the proposed bounds can be easily extended to quaternary orthogonal signals, such as coherently detected frequency-shift keying and pulse-position modulation.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1358849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact