Pancreatic islet cell transplantation has represented the mainstay of cell therapy for the potential, final cure of type 1 diabetes mellitus (T1D), along the past two decades. Unfortunately, the restricted availability of cadaveric human donor pancreases coupled with heavy side effects of the recipient's general immunosuppression, have severely crippled progress of this approach into clinical trials. Only a few excellence centers, worldwide, have thus far accrued still quite marginal clinical success. In an attempt to overcome the limits of islet transplantation new technologies for use of several stem cell lineages are being under investigation, with initial experimental evidence of success. Essentially, the actual lines of research involve attempts to either activate native endogenous stem cells that replace diseased/dead cells, by a cell regeneration process, or condition other stem cells to acquire the functional properties of the targeted cells to be substituted (i.e., beta-cell-like elements associated with insulin secretory competence). A wide array of stem cells may fulfill this task, from embryonic (whose use still faces strong ethical barriers), to adult, to induced pluripotent stem cells. Mesenchymal adult stem cells, retrievable from many different sites, including adipose tissue, bone marrow and post-partum umbilical cord Wharton Jelly, seem to couple plastic to immunoregulatory properties that might greatly help progress for the disease cure.

Islet transplantation versus stem cells for the cell therapy of type 1 diabetes mellitus

MONTANUCCI, Pia;CALAFIORE, Riccardo
2015

Abstract

Pancreatic islet cell transplantation has represented the mainstay of cell therapy for the potential, final cure of type 1 diabetes mellitus (T1D), along the past two decades. Unfortunately, the restricted availability of cadaveric human donor pancreases coupled with heavy side effects of the recipient's general immunosuppression, have severely crippled progress of this approach into clinical trials. Only a few excellence centers, worldwide, have thus far accrued still quite marginal clinical success. In an attempt to overcome the limits of islet transplantation new technologies for use of several stem cell lineages are being under investigation, with initial experimental evidence of success. Essentially, the actual lines of research involve attempts to either activate native endogenous stem cells that replace diseased/dead cells, by a cell regeneration process, or condition other stem cells to acquire the functional properties of the targeted cells to be substituted (i.e., beta-cell-like elements associated with insulin secretory competence). A wide array of stem cells may fulfill this task, from embryonic (whose use still faces strong ethical barriers), to adult, to induced pluripotent stem cells. Mesenchymal adult stem cells, retrievable from many different sites, including adipose tissue, bone marrow and post-partum umbilical cord Wharton Jelly, seem to couple plastic to immunoregulatory properties that might greatly help progress for the disease cure.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1362969
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact