The gravity damper is safety device used for the air treatment that prevent overpressure inside the unit through the opening. It is a normally closed valve under the effect of the gravity force, which, under the action of the incident air flow, allows to manage any excess mass. Clearly, although the device is rather simple and therefore reliable, the operating conditions may prove burdensome, especially if the gravity dampers are applied to installations of energy transformation, such as the gas turbines; this is mainly due to the need to develop large masses of air at speeds rather incurred. This article describes an experiment carried out on a gravity damper designed to be installed in a gas turbine. The characterization has been performed in numerical (CFD-FEM), considering both the mode shapes and the natural frequencies of the device in working condition as well as any phenomenon of detachment of the fluid that can trigger vortex shedding and subsequently validated in the wind tunnel facilities of the University of Perugia. In particular, what is wanted to be highlighted is the fact that, after a preliminary analysis, it has been clearly evident that, under the operating conditions, the structure would be affected by phenomena of vortex shedding. The shedding frequency is next to some natural frequencies of the structure, with obvious repercussions on the integrity of the structure. An experimental vibration analysis performed in the wind tunnel at flow regime has in fact allowed to identify the phenomenon of lock-in.

Dynamic effects of wind loads on a gravity damper

SCAPPATICCI, LORENZO;MARIANI, Francesco;BARTOLINI, NICOLA;RISI, FRANCESCO;GARINEI, Alberto
2015

Abstract

The gravity damper is safety device used for the air treatment that prevent overpressure inside the unit through the opening. It is a normally closed valve under the effect of the gravity force, which, under the action of the incident air flow, allows to manage any excess mass. Clearly, although the device is rather simple and therefore reliable, the operating conditions may prove burdensome, especially if the gravity dampers are applied to installations of energy transformation, such as the gas turbines; this is mainly due to the need to develop large masses of air at speeds rather incurred. This article describes an experiment carried out on a gravity damper designed to be installed in a gas turbine. The characterization has been performed in numerical (CFD-FEM), considering both the mode shapes and the natural frequencies of the device in working condition as well as any phenomenon of detachment of the fluid that can trigger vortex shedding and subsequently validated in the wind tunnel facilities of the University of Perugia. In particular, what is wanted to be highlighted is the fact that, after a preliminary analysis, it has been clearly evident that, under the operating conditions, the structure would be affected by phenomena of vortex shedding. The shedding frequency is next to some natural frequencies of the structure, with obvious repercussions on the integrity of the structure. An experimental vibration analysis performed in the wind tunnel at flow regime has in fact allowed to identify the phenomenon of lock-in.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1363452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact