A laser bonding technique has been developed recently to create an innovative material based on a silicon/diamond interface. In this work, we propose the development and the application of a numerical model for TCAD simulations of poly-crystalline diamond conceived for Silicon-on-Diamond (SoD) sensors to be used, e.g., as particle detectors in High Energy Physics (HEP) experiments. The model is based on the introduction of an articulated, yet physically based, picture of deep-level defects acting as a recombination centers and/or trap states. The modelling scheme has been validated by comparing the simulation findings with experimental measurements carried out on real devices featuring a thinned CMOS Active Pixel Sensor chip bonded to a poly-crystalline diamond substrate. Eventually, this technique could foster the exploration of innovative semiconductor devices conjugating the properties of diamond substrates and the capabilities of CMOS electronics.

Simulation and test of Silicon-on-Diamond sensors for particle detection

PASSERI, Daniele;MOROZZI, ARIANNA;SERVOLI, LEONELLO;KANXHERI, KEIDA;
2015

Abstract

A laser bonding technique has been developed recently to create an innovative material based on a silicon/diamond interface. In this work, we propose the development and the application of a numerical model for TCAD simulations of poly-crystalline diamond conceived for Silicon-on-Diamond (SoD) sensors to be used, e.g., as particle detectors in High Energy Physics (HEP) experiments. The model is based on the introduction of an articulated, yet physically based, picture of deep-level defects acting as a recombination centers and/or trap states. The modelling scheme has been validated by comparing the simulation findings with experimental measurements carried out on real devices featuring a thinned CMOS Active Pixel Sensor chip bonded to a poly-crystalline diamond substrate. Eventually, this technique could foster the exploration of innovative semiconductor devices conjugating the properties of diamond substrates and the capabilities of CMOS electronics.
2015
978-1-4799-8981-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1366924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact