In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)-oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properties of several graphene–TiO2 hybrids by means of density functional theory based calculations. Our results suggest that the physisorbed system is less electronically coupled and does not enhance the photoresponsivity in the visible region. On the other hand, the chemical bond between graphene and TiO2 nanosheet, a Ti[BOND]O[BOND]C bridge, clearly makes the two components highly electronically coupled and the graphene oxide (GO)/TiO2 chemisorbed system is characterized by a higher photoresponsivity in the visible region. This result is ascribed to the raise of a new valence band maximum state that lies in the pristine bandgap of TiO2 nanosheet, consequence of the hybridization between GO and TiO2.

DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials

GIORGI, Giacomo;
2014

Abstract

In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)-oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properties of several graphene–TiO2 hybrids by means of density functional theory based calculations. Our results suggest that the physisorbed system is less electronically coupled and does not enhance the photoresponsivity in the visible region. On the other hand, the chemical bond between graphene and TiO2 nanosheet, a Ti[BOND]O[BOND]C bridge, clearly makes the two components highly electronically coupled and the graphene oxide (GO)/TiO2 chemisorbed system is characterized by a higher photoresponsivity in the visible region. This result is ascribed to the raise of a new valence band maximum state that lies in the pristine bandgap of TiO2 nanosheet, consequence of the hybridization between GO and TiO2.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1369029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact