In addition to the soil saturated hydraulic conductivity, Ks, the initial soil moisture content, θi, is the quantity commonly incorporated in rainfall infiltration models for simulation of surface runoff hydrographs. Previous studies on the effect of the spatial heterogeneity of initial soil water content in the generation of surface runoff were generally not conclusive, and provided no guidance on designing networks for soil moisture measurements. In this study, the role of the spatial variability of θi at the small watershed scale is examined through the use of a simulation model and measurements of θi. The model combines two existing components of infiltration and surface runoff to model the flow discharge at the watershed outlet. The observed values of soil moisture in three experimental plots are combined to determine seven different distributions of θi, each used to compute the hydrographs produced by four different rainfall patterns for two initial conditions classified as "dry" soil and "wet" soil. For rainfalls events typically associated with floods, the spatial variability of θi at the watershed scale does not cause significant variations in surface runoff for initially dry or wet soils. Furthermore, when the main objective is to represent flood events a single ground point measurement of θi in each area with the same land use may suffice to obtain adequate outflow hydrographs at the outlet.

An investigation of the effects of spatial heterogeneity of initial soil moisture content on surface runoff simulation at a small watershed scale

MORBIDELLI, Renato
;
SALTALIPPI, Carla;FLAMMINI, ALESSIA;CORRADINI, Corrado;
2016

Abstract

In addition to the soil saturated hydraulic conductivity, Ks, the initial soil moisture content, θi, is the quantity commonly incorporated in rainfall infiltration models for simulation of surface runoff hydrographs. Previous studies on the effect of the spatial heterogeneity of initial soil water content in the generation of surface runoff were generally not conclusive, and provided no guidance on designing networks for soil moisture measurements. In this study, the role of the spatial variability of θi at the small watershed scale is examined through the use of a simulation model and measurements of θi. The model combines two existing components of infiltration and surface runoff to model the flow discharge at the watershed outlet. The observed values of soil moisture in three experimental plots are combined to determine seven different distributions of θi, each used to compute the hydrographs produced by four different rainfall patterns for two initial conditions classified as "dry" soil and "wet" soil. For rainfalls events typically associated with floods, the spatial variability of θi at the watershed scale does not cause significant variations in surface runoff for initially dry or wet soils. Furthermore, when the main objective is to represent flood events a single ground point measurement of θi in each area with the same land use may suffice to obtain adequate outflow hydrographs at the outlet.
2016
File in questo prodotto:
File Dimensione Formato  
2016_An investigation of the effects of spatial heterogeneity_POSTPRINT.pdf

accesso aperto

Tipologia di allegato: Post-print
Licenza: Creative commons
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1380912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact