A chiral chromatography method enabling the simultaneous diastereo- and enantioseparation of N(α)-Boc-N(4)-(hydroorotyl)-4-aminophenylalanine [Boc-Aph(Hor)-OH, 1] was optimized with a quinine-based zwitterionic stationary phase. The polar-ionic eluent system consisting of ACN:MeOH:water-49.7:49.7:0.6 (v/v/v) with formic acid (4.0mM) and diethylamine (2.5mM), allowed the successful separation of the four acid stereoisomers: αd,d-/d,l-1=1.08; αd,l-/l,d-1=1.08; αl,d-/l,l-1=1.40. According to the in-house developed synthetic procedure and the recorded electronic circular dichroism spectra, the following stereoisomeric elution order was readily established in the optimal chromatographic conditions: d,d-1
Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: Focus on the stereorecognition mechanism
IANNI, FEDERICA;CAROTTI, Andrea;MARINOZZI, Maura;DI MICHELE, ALESSANDRO;SARDELLA, Roccaldo
;NATALINI, Benedetto
2015
Abstract
A chiral chromatography method enabling the simultaneous diastereo- and enantioseparation of N(α)-Boc-N(4)-(hydroorotyl)-4-aminophenylalanine [Boc-Aph(Hor)-OH, 1] was optimized with a quinine-based zwitterionic stationary phase. The polar-ionic eluent system consisting of ACN:MeOH:water-49.7:49.7:0.6 (v/v/v) with formic acid (4.0mM) and diethylamine (2.5mM), allowed the successful separation of the four acid stereoisomers: αd,d-/d,l-1=1.08; αd,l-/l,d-1=1.08; αl,d-/l,l-1=1.40. According to the in-house developed synthetic procedure and the recorded electronic circular dichroism spectra, the following stereoisomeric elution order was readily established in the optimal chromatographic conditions: d,d-1I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.