Physisorption and storage of molecular hydrogen on single-walled carbon nanotube (SWCNT) of various diameters and chiralities are studied by means of classical molecular dynamics (MD) simulations and a force field validated using DFT-D2 and CCSD(T) calculations. A nonrigid carbon nanotube model is implemented with stretching (C-C) and valence angle potentials (C-C-C) formulated as Morse and Harmonic cosine potentials, respectively. Our results evidence that the standard Lennard-Jones potential fails to describe the H2-H2 binding energies. Therefore, our simulations make use of a potential that contains two-body term with parameters obtained from fitting CCSD(T)/CBS binding energies. From our MD simulations, we have analyzed the interaction energies, radial distribution functions, gravimetric densities (% wt), and the distances of the adsorbed H2 layers to the three zigzag type of nanotubes (5,0), (10,0), and (15,0) at 100 and 300 K.
Adsorption of Hydrogen Molecules on Carbon Nanotubes Using Quantum Chemistry and Molecular Dynamics
FAGINAS LAGO, Maria Noelia;
2016
Abstract
Physisorption and storage of molecular hydrogen on single-walled carbon nanotube (SWCNT) of various diameters and chiralities are studied by means of classical molecular dynamics (MD) simulations and a force field validated using DFT-D2 and CCSD(T) calculations. A nonrigid carbon nanotube model is implemented with stretching (C-C) and valence angle potentials (C-C-C) formulated as Morse and Harmonic cosine potentials, respectively. Our results evidence that the standard Lennard-Jones potential fails to describe the H2-H2 binding energies. Therefore, our simulations make use of a potential that contains two-body term with parameters obtained from fitting CCSD(T)/CBS binding energies. From our MD simulations, we have analyzed the interaction energies, radial distribution functions, gravimetric densities (% wt), and the distances of the adsorbed H2 layers to the three zigzag type of nanotubes (5,0), (10,0), and (15,0) at 100 and 300 K.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.