This paper considers the application of the Generalized Telegrapher"s Equations (GTE) to the electromagnetic modelling and designing of integrated electro-optical devices. This approach allows to eliminate the restrictions introduced by others models, as: weakly guiding condition and isotropic unperturbed medium and to value the modulator time response for a generic modulating signal. The presence of small dielectric perturbations and the large difference between the optical and modulating signal frequencies are the hypotheses considered in deriving the model. The analysis has been applied to a GaAs phase modulator in order to validate the equations and to evidence the effects of the induced anisotropy on the time-domain response. The model can be extended to the analysis of multimode dielectric waveguides, such as independent polarization and directional coupler modulator
On the Use of Generalized Telegrapher’s Equations in the Synthesis of Electro-Optic Modulators
Venanzoni, Giuseppe;
2004
Abstract
This paper considers the application of the Generalized Telegrapher"s Equations (GTE) to the electromagnetic modelling and designing of integrated electro-optical devices. This approach allows to eliminate the restrictions introduced by others models, as: weakly guiding condition and isotropic unperturbed medium and to value the modulator time response for a generic modulating signal. The presence of small dielectric perturbations and the large difference between the optical and modulating signal frequencies are the hypotheses considered in deriving the model. The analysis has been applied to a GaAs phase modulator in order to validate the equations and to evidence the effects of the induced anisotropy on the time-domain response. The model can be extended to the analysis of multimode dielectric waveguides, such as independent polarization and directional coupler modulatorI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.