BACKGROUND: Increased abdominal fat and chronic inflammation in the expanded adipose tissue of obesity contribute to the development of insulin resistance and type 2 diabetes mellitus (T2D). The emerging immunoregulatory and anti-inflammatory properties of Sertoli cells have prompted their application to experimental models of autoimmune/inflammatory disorders, including diabetes. The main goal of this work was to verify whether transplantation of microencapsulated prepubertal porcine Sertoli cells (MC-SC) in the subcutaneous abdominal fat depot of spontaneously diabetic and obese db/db mice (homozygous for the diabetes spontaneous mutation [Leprdb ]) would: (i) improve glucose homeostasis and (ii) modulate local and systemic immune response and adipokines profiles. METHODS: Porcine prepubertal Sertoli cells were isolated, according to previously established methods and enveloped in Barium alginate microcapsules by a mono air-jet device. MC-SC were then injected in the subcutaneous abdominal fat depot of db/db mice. RESULTS: We have preliminarily shown that graft of MC-SC restored glucose homeostasis, with normalization of glycated hemoglobin values with improvement of the intraperitoneal glucose tolerance test in 60% of the treated animals. These results were associated with consistent increase, in the adipose tissue, of uncoupling protein 1 expression, regulatory B cells, anti-inflammatory macrophages and a concomitant decrease of proinflammatory macrophages. Furthermore, the treated animals showed a reduction in inducible NOS and proinflammatory molecules and a significant increase in an anti-inflammatory cytokine such as IL-10 along with concomitant rise of circulating adiponectin levels. The anti-hyperglycemic graft effects also emerged from an increased expression of GLUT-4, in conjunction with downregulation of GLUT-2, in skeletal muscle and liver, respectively. CONCLUSIONS: Preliminarily, xenograft of MC-SC holds promises for an effective cell therapy approach for treatment of experimental T2D.

Xenograft of microencapsulated Sertoli cells restores glucose homeostasis in db/db mice with spontaneous diabetes mellitus

LUCA, Giovanni;ARATO, IVA;MANCUSO, FRANCESCA;CALVITTI, Mario;MURDOLO, Giuseppe;FALLARINO, Francesca;BARONI, Tiziano;AGLIETTI, Maria Chiara;BODO, Maria;CALAFIORE, Riccardo
2016-01-01

Abstract

BACKGROUND: Increased abdominal fat and chronic inflammation in the expanded adipose tissue of obesity contribute to the development of insulin resistance and type 2 diabetes mellitus (T2D). The emerging immunoregulatory and anti-inflammatory properties of Sertoli cells have prompted their application to experimental models of autoimmune/inflammatory disorders, including diabetes. The main goal of this work was to verify whether transplantation of microencapsulated prepubertal porcine Sertoli cells (MC-SC) in the subcutaneous abdominal fat depot of spontaneously diabetic and obese db/db mice (homozygous for the diabetes spontaneous mutation [Leprdb ]) would: (i) improve glucose homeostasis and (ii) modulate local and systemic immune response and adipokines profiles. METHODS: Porcine prepubertal Sertoli cells were isolated, according to previously established methods and enveloped in Barium alginate microcapsules by a mono air-jet device. MC-SC were then injected in the subcutaneous abdominal fat depot of db/db mice. RESULTS: We have preliminarily shown that graft of MC-SC restored glucose homeostasis, with normalization of glycated hemoglobin values with improvement of the intraperitoneal glucose tolerance test in 60% of the treated animals. These results were associated with consistent increase, in the adipose tissue, of uncoupling protein 1 expression, regulatory B cells, anti-inflammatory macrophages and a concomitant decrease of proinflammatory macrophages. Furthermore, the treated animals showed a reduction in inducible NOS and proinflammatory molecules and a significant increase in an anti-inflammatory cytokine such as IL-10 along with concomitant rise of circulating adiponectin levels. The anti-hyperglycemic graft effects also emerged from an increased expression of GLUT-4, in conjunction with downregulation of GLUT-2, in skeletal muscle and liver, respectively. CONCLUSIONS: Preliminarily, xenograft of MC-SC holds promises for an effective cell therapy approach for treatment of experimental T2D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1393018
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact