Ternary composites were prepared by twin screw extrusion from polybutylene-succinate (PBS), poly(ethylene-glycol) (PEG), and cellulose nanocrystals (CNC). The aim of the work is to improve the physical–mechanical properties of PBS by the addition of CNC. A PEG/CNC masterbatch was prepared in order to achieve a good dispersion of hydrophilic CNC in the hydrophobic PBS. The influence of the nanoparticle content on the polymer properties was studied. Regarding the thermal properties fractioned crystallization phenomena of PEG was observed during cooling from the melt. No significant nucleating effect of the nanocellulose was observed. The material containing 4 wt % of CNC showed the best mechanical performance among the nanocomposites studied due to the combination of high modulus and elongation at break with a low detrimental in strength compared with the PBS/PEG blend. Moreover, no nanocellulose agglomerations were observed in its FESEM micrograph.

Preparation and characterization of polybutylene-succinate/poly(ethylene-glycol)/cellulose nanocrystals ternary composites

FORTUNATI, ELENA;PUGLIA, Debora;
2016

Abstract

Ternary composites were prepared by twin screw extrusion from polybutylene-succinate (PBS), poly(ethylene-glycol) (PEG), and cellulose nanocrystals (CNC). The aim of the work is to improve the physical–mechanical properties of PBS by the addition of CNC. A PEG/CNC masterbatch was prepared in order to achieve a good dispersion of hydrophilic CNC in the hydrophobic PBS. The influence of the nanoparticle content on the polymer properties was studied. Regarding the thermal properties fractioned crystallization phenomena of PEG was observed during cooling from the melt. No significant nucleating effect of the nanocellulose was observed. The material containing 4 wt % of CNC showed the best mechanical performance among the nanocomposites studied due to the combination of high modulus and elongation at break with a low detrimental in strength compared with the PBS/PEG blend. Moreover, no nanocellulose agglomerations were observed in its FESEM micrograph.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1394161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 23
social impact