We investigated whether aortic characteristic impedance (Zc), that is, the ratio between the pulsatile change in pressure and flow in the proximal aorta, is related to left ventricular hypertrophy and geometry independently of blood pressure (BP). A total of 438 never-treated hypertensive individuals (men 62%, age 48 ± 11 years, BP 147/90 ± 16/10 mm Hg) underwent echocardiography and 24 h BP monitoring. Aortic pressure waveform was obtained from radial tonometry with a generalized transfer function (SphygmoCor). Using a validated aortic blood flow model based on higher order Windkessel theory (ARCSolver), aortic Zc, forward (Pf) and backward (Pb) wave amplitudes and their ratio (Pb/Pf = reflection magnitude) were calculated from central waveform.
Pressure-independent relationship of aortic characteristic impedance with left ventricular mass and geometry in untreated hypertension
PUCCI, GIACOMO;BATTISTA, FRANCESCA;SCHILLACI, Giuseppe
2015
Abstract
We investigated whether aortic characteristic impedance (Zc), that is, the ratio between the pulsatile change in pressure and flow in the proximal aorta, is related to left ventricular hypertrophy and geometry independently of blood pressure (BP). A total of 438 never-treated hypertensive individuals (men 62%, age 48 ± 11 years, BP 147/90 ± 16/10 mm Hg) underwent echocardiography and 24 h BP monitoring. Aortic pressure waveform was obtained from radial tonometry with a generalized transfer function (SphygmoCor). Using a validated aortic blood flow model based on higher order Windkessel theory (ARCSolver), aortic Zc, forward (Pf) and backward (Pb) wave amplitudes and their ratio (Pb/Pf = reflection magnitude) were calculated from central waveform.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.