Novel gluten based bionanocomposites reinforced with cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) extracted from sunflower stalks by respectively a steam explosion treatment and a hydrolysis procedure, were prepared by casting/evaporation. The extracted cellulose nanomaterials, both CNC and CNF, were embedded in gluten matrix and their effect was investigated. Morphological investigations highlighted that gluten based bionanocomposites showed a homogenous morphology, the absence of visible cellulose nanoreinforcements, and the presence of holes for Gluten-CNF nanocomposites. Gluten-CNF showed a reduction of water vapour permeability coefficients but the values are higher respect to gluten reinforced with CNC. This behaviour could be related to the ability of CNC to increase the tortuous path of gas molecules. Moreover, the results from thermal, mechanical and barrier properties confirmed the strong interactions obtained between CNC and gluten matrix during the process. The study suggested the possibility to re-valorise agricultural wastes with potential applications as reinforcement in polymer matrix bionanocomposites.

Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties

FORTUNATI, ELENA
;
LUZI, FRANCESCA;PUGLIA, Debora;KENNY, Jose Maria;TORRE, Luigi
2016

Abstract

Novel gluten based bionanocomposites reinforced with cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) extracted from sunflower stalks by respectively a steam explosion treatment and a hydrolysis procedure, were prepared by casting/evaporation. The extracted cellulose nanomaterials, both CNC and CNF, were embedded in gluten matrix and their effect was investigated. Morphological investigations highlighted that gluten based bionanocomposites showed a homogenous morphology, the absence of visible cellulose nanoreinforcements, and the presence of holes for Gluten-CNF nanocomposites. Gluten-CNF showed a reduction of water vapour permeability coefficients but the values are higher respect to gluten reinforced with CNC. This behaviour could be related to the ability of CNC to increase the tortuous path of gas molecules. Moreover, the results from thermal, mechanical and barrier properties confirmed the strong interactions obtained between CNC and gluten matrix during the process. The study suggested the possibility to re-valorise agricultural wastes with potential applications as reinforcement in polymer matrix bionanocomposites.
2016
File in questo prodotto:
File Dimensione Formato  
2016_Revalorization of sunflower stalks as novel sources_accepted version.pdf

Open Access dal 01/01/2018

Tipologia di allegato: Post-print
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1394385
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 82
social impact