Mathematical modeling is a key process in Systems Biology and the use of computational tools such as Cytoscape for omics data processing, need to be integrated in the modeling activity. In this paper we propose a new methodology for modeling signaling networks by combining ordinary differential equation models and a gene recommender system, GeneMANIA. We started from existing models, that are stored in the BioModels database, and we generated a query to use as input for the GeneMANIA algorithm. The output of the recommender system was then led back to the kinetic reactions that were finally added to the starting model. We applied the proposed methodology to EGFR-IGF1R signal transduction network, which plays an important role in translational oncology and cancer therapy of non small cell lung cancer.
An approach for optimally extending mathematical models of signaling networks using omics data
BIANCONI, FORTUNATO;CRINO', Lucio;VALIGI, Paolo
2015
Abstract
Mathematical modeling is a key process in Systems Biology and the use of computational tools such as Cytoscape for omics data processing, need to be integrated in the modeling activity. In this paper we propose a new methodology for modeling signaling networks by combining ordinary differential equation models and a gene recommender system, GeneMANIA. We started from existing models, that are stored in the BioModels database, and we generated a query to use as input for the GeneMANIA algorithm. The output of the recommender system was then led back to the kinetic reactions that were finally added to the starting model. We applied the proposed methodology to EGFR-IGF1R signal transduction network, which plays an important role in translational oncology and cancer therapy of non small cell lung cancer.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.