Complete permutation monomials of degree $1+rac{q^n-1}{q-1}$ over the finite field with $q^n$ elements in odd characteristic, for $n+1$ a prime and (n+1)^4 less than q, are classified. As a corollary, a conjecture by Wu, Li, Helleseth, and Zhang is proven in odd characteristic. When n + 1 is a power of the characteristic we provide some new examples. Indecomposable exceptional polynomials of degree 8 and 9 are also classified.

Complete permutation polynomials from exceptional polynomials

BARTOLI, DANIELE;GIULIETTI, Massimo;ZINI, GIOVANNI
2017

Abstract

Complete permutation monomials of degree $1+rac{q^n-1}{q-1}$ over the finite field with $q^n$ elements in odd characteristic, for $n+1$ a prime and (n+1)^4 less than q, are classified. As a corollary, a conjecture by Wu, Li, Helleseth, and Zhang is proven in odd characteristic. When n + 1 is a power of the characteristic we provide some new examples. Indecomposable exceptional polynomials of degree 8 and 9 are also classified.
2017
File in questo prodotto:
File Dimensione Formato  
postprintCPP-JNT.pdf

Open Access dal 01/08/2019

Descrizione: PDF Postprint
Tipologia di allegato: Post-print
Licenza: Creative commons
Dimensione 198.76 kB
Formato Adobe PDF
198.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1400537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact