A series of 5,15 push−pull meso-diarylzinc(II) porphyrinates, carrying one or two −COOH or −COOCH3 acceptor groups and a −OCH3 or a −N(CH3)2 donor group, show in N,N-dimethylformamide and CHCl3 solutions a negative and solvent-dependent second-order nonlinear-optical (NLO) response measured by the electric-field-induced second-harmonic generation (EFISH) technique, different from the structurally related zinc(II) porphyrinate carrying a −N(CH3)2 donor group and a −NO2 acceptor group, where a still solvent-dependent but positive EFISH second-order response was previously reported. Moreover, when a −N(CH3)2 donor group and a −COOH acceptor group are part of a sterically hindered 2,12 push−pull β- pyrrolic-substituted tetraarylzinc(II) porphyrinate, the EFISH response is positive and solvent-independent. In order to rationalize these rather intriguing series of observations, EFISH measurements have been integrated by electronic absorption and IR spectroscopic investigations and by density functional theory (DFT) and coupled-perturbed DFT theoretical and 1H pulsed-gradient spin-echo NMR investigations, which prompt that the significant concentration effects and the strong influence of the solvent nature on the NLO response are originated by a complex whole of different aggregation processes induced by the −COOH group.

Intriguing Influence of −COOH-Driven Intermolecular Aggregation and Acid−Base Interactions with N,N‐Dimethylformamide on the Second-Order Nonlinear-Optical Response of 5,15 Push−Pull Diarylzinc(II) Porphyrinates

MACCHIONI, Alceo;ROCCHIGIANI, LUCA;
2017

Abstract

A series of 5,15 push−pull meso-diarylzinc(II) porphyrinates, carrying one or two −COOH or −COOCH3 acceptor groups and a −OCH3 or a −N(CH3)2 donor group, show in N,N-dimethylformamide and CHCl3 solutions a negative and solvent-dependent second-order nonlinear-optical (NLO) response measured by the electric-field-induced second-harmonic generation (EFISH) technique, different from the structurally related zinc(II) porphyrinate carrying a −N(CH3)2 donor group and a −NO2 acceptor group, where a still solvent-dependent but positive EFISH second-order response was previously reported. Moreover, when a −N(CH3)2 donor group and a −COOH acceptor group are part of a sterically hindered 2,12 push−pull β- pyrrolic-substituted tetraarylzinc(II) porphyrinate, the EFISH response is positive and solvent-independent. In order to rationalize these rather intriguing series of observations, EFISH measurements have been integrated by electronic absorption and IR spectroscopic investigations and by density functional theory (DFT) and coupled-perturbed DFT theoretical and 1H pulsed-gradient spin-echo NMR investigations, which prompt that the significant concentration effects and the strong influence of the solvent nature on the NLO response are originated by a complex whole of different aggregation processes induced by the −COOH group.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1403063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact