While rotary molecular switches based on neutral and cationic organic pi-systems have been reported, structurally homologous anionic switches providing complementary properties have not been prepared so far. Here we report the design and preparation of a molecular switch mimicking the anionic p-HBDI chromophore of the green fluorescent protein. The investigation of the mechanism and dynamics of the E/Z switching function is carried out both computationally and experimentally. The data consistently support axial rotary motion occurring on a sub-picosecond time scale. Transient spectroscopy and trajectory simulations show that the nonadiabatic decay process occurs in the vicinity of a conical intersection (CInt) between a charge transfer state and a covalent/diradical state. Comparison of our anionic p-HBDI-like switch with the previously reported cationic N-alkyl indanylidene pyrrolinium switch mimicking visual pigments reveals that these similar systems translocate, upon vertical excitation, a similar net charge in the same axial direction.

Design, Synthesis, and Dynamics of a Green Fluorescent Protein Fluorophore Mimic with an Ultrafast Switching Function

LATTERINI, Loredana;PANNACCI, Danilo;
2016

Abstract

While rotary molecular switches based on neutral and cationic organic pi-systems have been reported, structurally homologous anionic switches providing complementary properties have not been prepared so far. Here we report the design and preparation of a molecular switch mimicking the anionic p-HBDI chromophore of the green fluorescent protein. The investigation of the mechanism and dynamics of the E/Z switching function is carried out both computationally and experimentally. The data consistently support axial rotary motion occurring on a sub-picosecond time scale. Transient spectroscopy and trajectory simulations show that the nonadiabatic decay process occurs in the vicinity of a conical intersection (CInt) between a charge transfer state and a covalent/diradical state. Comparison of our anionic p-HBDI-like switch with the previously reported cationic N-alkyl indanylidene pyrrolinium switch mimicking visual pigments reveals that these similar systems translocate, upon vertical excitation, a similar net charge in the same axial direction.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1403216
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact