Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme whose deficit causes the rare disorder Primary Hyperoxaluria Type I (PH1). We now describe the conjugation of poly(ethylene glycol)-co-poly(L-glutamic acid) (PEG-PGA) block-co-polymer to AGT via the formation of disulfide bonds between the polymer and solvent-exposed cysteine residues of the enzyme. PEG-PGA conjugation did not affect AGT structural/functional properties and allowed the enzyme to be internalized in a cellular model of PH1 and to restore glyoxylate-detoxification. The insertion of the C387S/K390S amino acid substitutions, known to favor interaction with the peroxisomal import machinery, reduced conjugation efficiency, but endowed conjugates with the ability to reach the peroxisomal compartment. These results, along with the finding that conjugates are hemocompatible, stable in plasma, and non-immunogenic, hold promise for the development of polypeptide-based AGT conjugates as a therapeutic option for PH1 patients and represent the base for applications to other diseases related to deficits in peroxisomal proteins.

Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I

Cellini, Barbara
2017

Abstract

Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme whose deficit causes the rare disorder Primary Hyperoxaluria Type I (PH1). We now describe the conjugation of poly(ethylene glycol)-co-poly(L-glutamic acid) (PEG-PGA) block-co-polymer to AGT via the formation of disulfide bonds between the polymer and solvent-exposed cysteine residues of the enzyme. PEG-PGA conjugation did not affect AGT structural/functional properties and allowed the enzyme to be internalized in a cellular model of PH1 and to restore glyoxylate-detoxification. The insertion of the C387S/K390S amino acid substitutions, known to favor interaction with the peroxisomal import machinery, reduced conjugation efficiency, but endowed conjugates with the ability to reach the peroxisomal compartment. These results, along with the finding that conjugates are hemocompatible, stable in plasma, and non-immunogenic, hold promise for the development of polypeptide-based AGT conjugates as a therapeutic option for PH1 patients and represent the base for applications to other diseases related to deficits in peroxisomal proteins.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1408488
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 17
social impact