In this work a method based on neural networks is proposed to retrieve profiles of refractivity, temperature, pressure and humidity in the troposphere from GPS-LEO radio occultation. To overcome the constraint of temperature profile availability at each GPS occultation, we have trained neural networks with refractivity profiles as input obtained from COSMIC satellites, while the outputs are the refractivity component profiles and the dry pressure profiles obtained from the contemporary ECMWF data.

Sviluppo di reti neurali per la determinazione di parametri atmosferici da radio occultazione GPS-COSMIC

BONAFONI, Stefania;BASILI, Patrizia;
2008

Abstract

In this work a method based on neural networks is proposed to retrieve profiles of refractivity, temperature, pressure and humidity in the troposphere from GPS-LEO radio occultation. To overcome the constraint of temperature profile availability at each GPS occultation, we have trained neural networks with refractivity profiles as input obtained from COSMIC satellites, while the outputs are the refractivity component profiles and the dry pressure profiles obtained from the contemporary ECMWF data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/141032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact