he antibiotic era is on the verge of a profound change and facing a ground shaking crisis. The frequent failures of antibiotic treatments are often associated with biofilm formation, which is responsible for chronic infections, exacerbation as well as reinfection. So far, albeit the large number of valuable strategies employed to combat biofilm formation, little success has been recorded. In this work, we propose a simple approach, based on hydrophobic ionic complexation with the bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), to enhance anti-biofilm activity of well-known antibiotics, namely kanamycin (K), amikacin (A) and vancomycin (V). Activity was evaluated against Staphylococcus aureus ATCC 29213 and six methicillin-resistant clinical isolates. The formation of a 1:4 ADCA and KDCA and 1:1 VUDCA complexes was confirmed by 1HNMR, in silico molecular dynamics simulations, as well as thermal, spectrophotometric and HPLC analyses. The complexes showed higher inhibition of S. aureus growth compared to parent drugs and a concentration-independent biofilm inhibition and dispersion capacity in the order KDCA > ADCA > >VUDCA, even at concentrations ten-fold below the MIC. S. aureus growth inhibition evaluated upon treatment with bile acid-drug sequential addition and the complexes as well as the measured complex stability in solution suggest a bile acid carrier role. The complexes showed in vivo toxicity only at 10xMIC concentration on the chicken embryo chorioallantoic membrane model in the order KDCA < ADCA < VUDCA. KDCA was safe at all concentrations. Although several aspects to be addressed, this approach is promising due to its simplicity, the proved in vitro anti-biofilm activity enhancement and tolerability. A potential pulmonary drug delivery application is envisaged.

Reshaping antibiotics through hydrophobic drug-bile acid ionic complexation enhances activity against Staphylococcus aureus biofilms

GIOVAGNOLI, Stefano
Conceptualization
;
PIETRELLA, Donatella;BARBERINI, Lanfranco;SANTI, Claudio;CAROTTI, Andrea;DI MICHELE, ALESSANDRO;RICCI, Maurizio
2017

Abstract

he antibiotic era is on the verge of a profound change and facing a ground shaking crisis. The frequent failures of antibiotic treatments are often associated with biofilm formation, which is responsible for chronic infections, exacerbation as well as reinfection. So far, albeit the large number of valuable strategies employed to combat biofilm formation, little success has been recorded. In this work, we propose a simple approach, based on hydrophobic ionic complexation with the bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), to enhance anti-biofilm activity of well-known antibiotics, namely kanamycin (K), amikacin (A) and vancomycin (V). Activity was evaluated against Staphylococcus aureus ATCC 29213 and six methicillin-resistant clinical isolates. The formation of a 1:4 ADCA and KDCA and 1:1 VUDCA complexes was confirmed by 1HNMR, in silico molecular dynamics simulations, as well as thermal, spectrophotometric and HPLC analyses. The complexes showed higher inhibition of S. aureus growth compared to parent drugs and a concentration-independent biofilm inhibition and dispersion capacity in the order KDCA > ADCA > >VUDCA, even at concentrations ten-fold below the MIC. S. aureus growth inhibition evaluated upon treatment with bile acid-drug sequential addition and the complexes as well as the measured complex stability in solution suggest a bile acid carrier role. The complexes showed in vivo toxicity only at 10xMIC concentration on the chicken embryo chorioallantoic membrane model in the order KDCA < ADCA < VUDCA. KDCA was safe at all concentrations. Although several aspects to be addressed, this approach is promising due to its simplicity, the proved in vitro anti-biofilm activity enhancement and tolerability. A potential pulmonary drug delivery application is envisaged.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1412846
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact