The short arm of chromosome 16 is one of the less stable regions of our genome, as over 10% of the euchromatic region of 16p is composed of highly complex low copy repeats that are known to be predisposed to rearrangements mediated by non-allelic homologous recombination. The 16p13.3p13.13 molecular region has been defined as the 16p duplication hotspot, and duplications of chromosome 16p13 have recently been confirmed to cause a recognizable syndrome, with CREBBP being the main phenotype-causing gene. To date, only one case report is present in the literature with a 16p13 duplication without CREBBP involvement; we describe here a second analogous case with a not previously reported 16p13.2p13.13 microduplication. This paper allows us to better delineate the clinical features of 16p13 microduplications that do not encompass CREBBP and, concurrently, to narrow the molecular region responsible for congenital heart defects in 16p duplications as well as to propose GRIN2A as a candidate gene for epilepsy.

The short arm of chromosome 16 is one of the less stable regions of our genome, as over 10% of the euchromatic region of 16p is composed of highly complex low copy repeats that are known to be predisposed to rearrangements mediated by non-allelic homologous recombination. The 16p13.3p13.13 molecular region has been defined as the 16p duplication hotspot, and duplications of chromosome 16p13 have recently been confirmed to cause a recognizable syndrome, with CREBBP being the main phenotype-causing gene. To date, only one case report is present in the literature with a 16p13 duplication without CREBBP involvement; we describe here a second analogous case with a not previously reported 16p13.2p13.13 microduplication. This paper allows us to better delineate the clinical features of 16p13 microduplications that do not encompass CREBBP and, concurrently, to narrow the molecular region responsible for congenital heart defects in 16p duplications as well as to propose GRIN2A as a candidate gene for epilepsy.

16p13 microduplication without CREBBP involvement: Moving toward a phenotype delineation

TUCCI, ARIANNA;Esposito, Susanna Maria Roberta;
2017

Abstract

The short arm of chromosome 16 is one of the less stable regions of our genome, as over 10% of the euchromatic region of 16p is composed of highly complex low copy repeats that are known to be predisposed to rearrangements mediated by non-allelic homologous recombination. The 16p13.3p13.13 molecular region has been defined as the 16p duplication hotspot, and duplications of chromosome 16p13 have recently been confirmed to cause a recognizable syndrome, with CREBBP being the main phenotype-causing gene. To date, only one case report is present in the literature with a 16p13 duplication without CREBBP involvement; we describe here a second analogous case with a not previously reported 16p13.2p13.13 microduplication. This paper allows us to better delineate the clinical features of 16p13 microduplications that do not encompass CREBBP and, concurrently, to narrow the molecular region responsible for congenital heart defects in 16p duplications as well as to propose GRIN2A as a candidate gene for epilepsy.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1417881
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact