Hydrogen is being studied as a means of energy storage and can be synthetized to store renewable energy and successively used as a fuel for power production or transport purposes. High temperature solid oxide electrolyzers (SOE) are proposed as a technology to produce hydrogen with high energy efficiency and high power density. Within the studies on SOE operation, little attention has been given to the oxygen electrode side, where air is normally used as a sweep gas. In this study, we consider the option of reducing the air flow rate when operating an SOE stack. The advantages in terms of efficiency are calculated, showing that efficiency increases up to 2.8% when reducing the air flow rate down to 7% of nominal value.
Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis
Barelli, Linda;Bidini, Gianni;Cinti, Giovanni
2017
Abstract
Hydrogen is being studied as a means of energy storage and can be synthetized to store renewable energy and successively used as a fuel for power production or transport purposes. High temperature solid oxide electrolyzers (SOE) are proposed as a technology to produce hydrogen with high energy efficiency and high power density. Within the studies on SOE operation, little attention has been given to the oxygen electrode side, where air is normally used as a sweep gas. In this study, we consider the option of reducing the air flow rate when operating an SOE stack. The advantages in terms of efficiency are calculated, showing that efficiency increases up to 2.8% when reducing the air flow rate down to 7% of nominal value.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.