In the present paper, we obtain a saturation result for the neural network (NN) operators of the max-product type. In particular, we show that any non-constant, continuous function on the interval [0, 1] cannot be approximated by the above operators , , by a rate of convergence higher than 1 / n. Moreover, since we know that any Lipschitz function f can be approximated by the NN operators with an order of approximation of 1 / n, here we are able to prove a local inverse result, in order to provide a characterization of the saturation (Favard) classes.
Saturation Classes for Max-Product Neural Network Operators Activated by Sigmoidal Functions
Costarelli, Danilo;Vinti, Gianluca
2017
Abstract
In the present paper, we obtain a saturation result for the neural network (NN) operators of the max-product type. In particular, we show that any non-constant, continuous function on the interval [0, 1] cannot be approximated by the above operators , , by a rate of convergence higher than 1 / n. Moreover, since we know that any Lipschitz function f can be approximated by the NN operators with an order of approximation of 1 / n, here we are able to prove a local inverse result, in order to provide a characterization of the saturation (Favard) classes.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.