Nowadays, the agricultural reuse of pharmaceutical sludge is still limited due to environmental and agronomic issues (e.g. low stabilization of the organic matter, phytotoxicity). The aim of the present study was to evaluate the characteristics of a pharmaceutical sludge derived from the daptomycin production and to study the possibility of improving its quality through composting. The pharmaceutical sludge showed high content of macronutrients (e.g. total Kjeldahl N content was 38 g kg−1), but it was also characterized by high salinity (7.9 dS m−1), phytotoxicity (germination index was 36.7%) and a low organic matter stabilization. Two different mixtures were prepared (mixture A: 70% sludge + 30% wood chips w/w, mixture B: 45% sludge + 45% wood chips + 10% cereal straw w/w) and treated through static composting using two different aeration systems: active and passive aeration. The mixtures resulted in the production of two different compost, and the evolution of process management parameters was different. The low total solids and organic matter content of mixture A led to the failure of the process. The addition of cereal straw in mixture B resulted in increased porosity and C/N ratio and, consequently, in an optimal development of the composting process (e.g. the final organic matter loss was 54.1% and 63.1% for the passively and actively aerated treatment, respectively). Both passively and actively aerated composting of mixture B improved the quality of the pharmaceutical sludge, by increasing its organic matter stabilization and removing phytotoxicity.

Valorization of a pharmaceutical organic sludge through different composting treatments

Cucina, Mirko;Tacconi, Chiara;Pezzolla, Daniela;Gigliotti, Giovanni
;
Zadra, Claudia
2018

Abstract

Nowadays, the agricultural reuse of pharmaceutical sludge is still limited due to environmental and agronomic issues (e.g. low stabilization of the organic matter, phytotoxicity). The aim of the present study was to evaluate the characteristics of a pharmaceutical sludge derived from the daptomycin production and to study the possibility of improving its quality through composting. The pharmaceutical sludge showed high content of macronutrients (e.g. total Kjeldahl N content was 38 g kg−1), but it was also characterized by high salinity (7.9 dS m−1), phytotoxicity (germination index was 36.7%) and a low organic matter stabilization. Two different mixtures were prepared (mixture A: 70% sludge + 30% wood chips w/w, mixture B: 45% sludge + 45% wood chips + 10% cereal straw w/w) and treated through static composting using two different aeration systems: active and passive aeration. The mixtures resulted in the production of two different compost, and the evolution of process management parameters was different. The low total solids and organic matter content of mixture A led to the failure of the process. The addition of cereal straw in mixture B resulted in increased porosity and C/N ratio and, consequently, in an optimal development of the composting process (e.g. the final organic matter loss was 54.1% and 63.1% for the passively and actively aerated treatment, respectively). Both passively and actively aerated composting of mixture B improved the quality of the pharmaceutical sludge, by increasing its organic matter stabilization and removing phytotoxicity.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1422710
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact