The measurement of contact pressure of human fingers is very important to understand human perceptual mechanisms, that is the main goal of most of the neuroscientific studies. It may also lead to a correct development of tactile devices and haptic systems, as they are intended to convey controllable and effective stimuli. In this work, an optical measurement system based on Frustrated Total Internal Reflection (FTIR) is proposed for the measurement of the pressure distribution on the contact area between a human finger and a flat surface. The feasibility study performed shows that the tested sensor can be effectively used for the measurement of the fingertip contact pressure both on static and dynamic conditions.
A new system for the measurement of gripping force based on scattering
Becchetti, M.;Marsili, R.
;Garinei, A.
2017
Abstract
The measurement of contact pressure of human fingers is very important to understand human perceptual mechanisms, that is the main goal of most of the neuroscientific studies. It may also lead to a correct development of tactile devices and haptic systems, as they are intended to convey controllable and effective stimuli. In this work, an optical measurement system based on Frustrated Total Internal Reflection (FTIR) is proposed for the measurement of the pressure distribution on the contact area between a human finger and a flat surface. The feasibility study performed shows that the tested sensor can be effectively used for the measurement of the fingertip contact pressure both on static and dynamic conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.