Micro-wind turbines are energy conversion technologies strongly affected by fatigue, as a result of their size and the variability of loads, induced by the unsteady wind conditions, and modulated by a very high rotational speed. This work is devoted to the experimental and numerical characterization of the aeroelastic behavior of a test-case horizontal-axis wind turbine (HAWT) with a 2 m rotor diameter and a maximum power production of 3 kW. The experimental studies have been conducted at the wind tunnel of the University of Perugia and consisted of accelerometer measurements at the tower and the tail fin. The numerical setup was the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) code for aeroelastic simulations, which was fed as input with the same wind conditions employed in the wind tunnel tests. The experimental and numerical analyses were coupled with the perspective of establishing a reciprocal feedback, and this has been accomplished. On one hand, the numerical model is important for interpreting the measured spectrum of tower oscillations and, for example, inspires the detection of a mass unbalance at the blades. On the other hand, the measurements inspire the question of how to interpret the interaction between the blades and the tower. The experimental spectrum of tail fin vibrations indicates that secondary elements, in terms of weight, can also transmit to the tower, giving meaningful contributions to the vibration spectra. Therefore, an integrated numerical and experimental approach is not only valuable but is also unavoidable, to fully characterize the dynamics of small wind-energy conversion systems.
Experimental and Numerical Vibrational Analysis of a Horizontal-Axis Micro-Wind Turbine
Francesco Castellani
;Davide Astolfi;Matteo Becchetti;Francesco Berno;Filippo Cianetti;Alessandro Cetrini
2018
Abstract
Micro-wind turbines are energy conversion technologies strongly affected by fatigue, as a result of their size and the variability of loads, induced by the unsteady wind conditions, and modulated by a very high rotational speed. This work is devoted to the experimental and numerical characterization of the aeroelastic behavior of a test-case horizontal-axis wind turbine (HAWT) with a 2 m rotor diameter and a maximum power production of 3 kW. The experimental studies have been conducted at the wind tunnel of the University of Perugia and consisted of accelerometer measurements at the tower and the tail fin. The numerical setup was the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) code for aeroelastic simulations, which was fed as input with the same wind conditions employed in the wind tunnel tests. The experimental and numerical analyses were coupled with the perspective of establishing a reciprocal feedback, and this has been accomplished. On one hand, the numerical model is important for interpreting the measured spectrum of tower oscillations and, for example, inspires the detection of a mass unbalance at the blades. On the other hand, the measurements inspire the question of how to interpret the interaction between the blades and the tower. The experimental spectrum of tail fin vibrations indicates that secondary elements, in terms of weight, can also transmit to the tower, giving meaningful contributions to the vibration spectra. Therefore, an integrated numerical and experimental approach is not only valuable but is also unavoidable, to fully characterize the dynamics of small wind-energy conversion systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.