Drive is a process of accelerated inheritance from one generation to the next that allows some genes to spread rapidly through populations even if they do not contribute to-or indeed even if they detract from-organismal survival and reproduction. Genetic elements that can spread by drive include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transposable elements. The fact that gene drive can lead to the spread of fitness-reducing traits (including lethality and sterility) makes it an attractive process to consider exploiting to control disease vectors and other pests. There are a number of efforts to develop synthetic gene drive systems, particularly focused on the mosquito-borne diseases that continue to plague us.

Gene Drive: Evolved and Synthetic

Crisanti, Andrea
2018

Abstract

Drive is a process of accelerated inheritance from one generation to the next that allows some genes to spread rapidly through populations even if they do not contribute to-or indeed even if they detract from-organismal survival and reproduction. Genetic elements that can spread by drive include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transposable elements. The fact that gene drive can lead to the spread of fitness-reducing traits (including lethality and sterility) makes it an attractive process to consider exploiting to control disease vectors and other pests. There are a number of efforts to develop synthetic gene drive systems, particularly focused on the mosquito-borne diseases that continue to plague us.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1426312
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 59
social impact