Encapsulating, or immunoisolating, insulin-secreting cells within implantable, semipermeable membranes is an emerging treatment for type 1 diabetes. This approach can eliminate the need for immunosuppressive drug treatments to prevent transplant rejection and overcome the shortage of donor tissues by utilizing cells derived from allogeneic or xenogeneic sources. Encapsulation device designs are being optimized alongside the development of clinically viable, replenishable, insulin-producing stem cells, for the first time creating the possibility of widespread therapeutic use of this technology. Here, we highlight the status of the most advanced and widely explored implementations of cell encapsulation with an eye toward translating the potential of this technological approach to medical reality.
Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes
Calafiore, Riccardo;
2018
Abstract
Encapsulating, or immunoisolating, insulin-secreting cells within implantable, semipermeable membranes is an emerging treatment for type 1 diabetes. This approach can eliminate the need for immunosuppressive drug treatments to prevent transplant rejection and overcome the shortage of donor tissues by utilizing cells derived from allogeneic or xenogeneic sources. Encapsulation device designs are being optimized alongside the development of clinically viable, replenishable, insulin-producing stem cells, for the first time creating the possibility of widespread therapeutic use of this technology. Here, we highlight the status of the most advanced and widely explored implementations of cell encapsulation with an eye toward translating the potential of this technological approach to medical reality.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.