Disposal of biodegradable waste has become a stringent waste management and environmental issue. As a result, anaerobic digestion has become one of the best alternative technology to treat the organic fraction of municipal solid wastes and can be an important source of bioenergy. This study focuses on the evaluation of biogas and methane yields from the digestion and co-digestion of mixtures of waste untreated sludge and the organic fraction of municipal solid wastes. These are compared with the results obtained from the digestion and codigestion of mixtures containing waste active sludge and the organic fraction of municipal solid wastes. The two types of substrates were used to perform biomethanation potential tests, in mesophilic conditions (35 °C) at lab scale. It was observed a maximum biogas yield for 100% of untreated sewage sludge, corresponding to 0.644 Nm3/kg VS and 0.499 Nm3/kg VS of biogas and methane production respectively. The study also demonstrates the possibility of increasing biogas production up to 36% and methane content up to 94% using waste untreated sludge substrate in both digestion and codigestion, compared to waste active sludge substrate.
Codigestion of Untreated and Treated Sewage Sludge with the Organic Fraction of Municipal Solid Wastes
Annarita Pugliese
;Katarzyna Slopiecka
;Valentina Pistolesi
;MASSOLI, SARA
;Pietro Bartocci
;Gianni Bidini
;Francesco Fantozzi
2017
Abstract
Disposal of biodegradable waste has become a stringent waste management and environmental issue. As a result, anaerobic digestion has become one of the best alternative technology to treat the organic fraction of municipal solid wastes and can be an important source of bioenergy. This study focuses on the evaluation of biogas and methane yields from the digestion and co-digestion of mixtures of waste untreated sludge and the organic fraction of municipal solid wastes. These are compared with the results obtained from the digestion and codigestion of mixtures containing waste active sludge and the organic fraction of municipal solid wastes. The two types of substrates were used to perform biomethanation potential tests, in mesophilic conditions (35 °C) at lab scale. It was observed a maximum biogas yield for 100% of untreated sewage sludge, corresponding to 0.644 Nm3/kg VS and 0.499 Nm3/kg VS of biogas and methane production respectively. The study also demonstrates the possibility of increasing biogas production up to 36% and methane content up to 94% using waste untreated sludge substrate in both digestion and codigestion, compared to waste active sludge substrate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.