In the last decade, biopolymer matrices reinforced with nanofillers have attracted great research efforts thanks to the synergistic characteristics derived from the combination of these two components. In this framework, this review focuses on the fundamental principles and recent progress in the field of aliphatic polyester-based nanocomposites for regenerative medicine applications. Traditional and emerging polymer nanocomposites are described in terms of polymer matrix properties and synthesis methods, used nanofillers, and nanocomposite processing and properties. Special attention has been paid to the most recent nanocomposite systems developed by combining alternative copolymerization strategies with specific nanoparticles. Thermal, electrical, biodegradation, and surface properties have been illustrated and correlated with the nanoparticle kind, content, and shape. Finally, cell-polymer (nanocomposite) interactions have been described by reviewing analysis methodologies such as primary and stem cell viability, adhesion, morphology, and differentiation processes.

Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine

Armentano, Ilaria
Writing – Original Draft Preparation
;
Morena, Francesco
Data Curation
;
Argentati, Chiara
Data Curation
;
Torre, Luigi
Data Curation
;
Martino, Sabata
Writing – Original Draft Preparation
2018

Abstract

In the last decade, biopolymer matrices reinforced with nanofillers have attracted great research efforts thanks to the synergistic characteristics derived from the combination of these two components. In this framework, this review focuses on the fundamental principles and recent progress in the field of aliphatic polyester-based nanocomposites for regenerative medicine applications. Traditional and emerging polymer nanocomposites are described in terms of polymer matrix properties and synthesis methods, used nanofillers, and nanocomposite processing and properties. Special attention has been paid to the most recent nanocomposite systems developed by combining alternative copolymerization strategies with specific nanoparticles. Thermal, electrical, biodegradation, and surface properties have been illustrated and correlated with the nanoparticle kind, content, and shape. Finally, cell-polymer (nanocomposite) interactions have been described by reviewing analysis methodologies such as primary and stem cell viability, adhesion, morphology, and differentiation processes.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1434807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact