A free boundary problem on a finite interval is formulated and solved for a nonlinear diffusion–convection equation. The model is suitable to describe drug diffusion in arterial tissues after the drug is released by an arterial stent. The problem is reduced to a system of nonlinear integral equations, admitting a unique solution for small time. The existence of an exact solution corresponding to a moving front is also shown, which is in agreement with numerical results existing in the literature.
Nonlinear diffusion in arterial tissues: a free boundary problem
Burini, Diletta
Investigation
;De Lillo, SilvanaSupervision
;Fioriti, GioiaInvestigation
2018
Abstract
A free boundary problem on a finite interval is formulated and solved for a nonlinear diffusion–convection equation. The model is suitable to describe drug diffusion in arterial tissues after the drug is released by an arterial stent. The problem is reduced to a system of nonlinear integral equations, admitting a unique solution for small time. The existence of an exact solution corresponding to a moving front is also shown, which is in agreement with numerical results existing in the literature.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.