The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory using the atmospheric Cherenkov technique. The CTA instrument will allow researchers to explore the gamma-ray sky in the energy range from 20 GeV to 300 TeV. CTA will comprise two arrays of telescopes, one with about 100 telescopes in the Southern hemisphere and another smaller array of telescopes in the North. CTA poses novel challenges in the field of ground-based Cherenkov astronomy, due to the demands of operating an observatory composed of a large and distributed system with the needed robustness and reliability that characterize an observatory. The array control and data acquisition system of CTA (ACTL) provides the means to control, readout and monitor the telescopes and equipment of the CTA arrays. The ACTL system must be flexible and reliable enough to permit the simultaneous and automatic control of multiple sub-arrays of telescopes with a minimum effort of the personnel on-site. In addition, the system must be able to react to external factors such as changing weather conditions and loss of telescopes and, on short timescales, to incoming scientific alerts from time-critical transient phenomena. The ACTL system provides the means to time-stamp, readout, filter and store the scientific data at aggregated rates of a few GB/s. Monitoring information from tens of thousands of hardware elements need to be channeled to high performance database systems and will be used to identify potential problems in the instrumentation. This contribution provides an overview of the ACTL system and a status report of the ACTL project within CTA. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

Status of the array control and data acquisition system for the Cherenkov Telescope Array

Tanci C.;Tosti G.;
2016

Abstract

The Cherenkov Telescope Array (CTA) will be the next-generation ground-based observatory using the atmospheric Cherenkov technique. The CTA instrument will allow researchers to explore the gamma-ray sky in the energy range from 20 GeV to 300 TeV. CTA will comprise two arrays of telescopes, one with about 100 telescopes in the Southern hemisphere and another smaller array of telescopes in the North. CTA poses novel challenges in the field of ground-based Cherenkov astronomy, due to the demands of operating an observatory composed of a large and distributed system with the needed robustness and reliability that characterize an observatory. The array control and data acquisition system of CTA (ACTL) provides the means to control, readout and monitor the telescopes and equipment of the CTA arrays. The ACTL system must be flexible and reliable enough to permit the simultaneous and automatic control of multiple sub-arrays of telescopes with a minimum effort of the personnel on-site. In addition, the system must be able to react to external factors such as changing weather conditions and loss of telescopes and, on short timescales, to incoming scientific alerts from time-critical transient phenomena. The ACTL system provides the means to time-stamp, readout, filter and store the scientific data at aggregated rates of a few GB/s. Monitoring information from tens of thousands of hardware elements need to be channeled to high performance database systems and will be used to identify potential problems in the instrumentation. This contribution provides an overview of the ACTL system and a status report of the ACTL project within CTA. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
2016
9781510602052
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1436814
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact