The Campi Flegrei caldera (southern Italy) is one of the most hazardous volcanic systems on Earth, having produced >60 eruptions in the past 15 ka. The caldera remains active and its potential for future eruptions is high, posing a danger to the dense population living nearby. Despite this, our understanding of pre-eruptive processes and the architecture of the sub-volcanic system are poorly constrained. Here, we combine established petrological techniques, geothermobarometric evaluation, and high-resolution trace element crystal mapping, to present a multifaceted, coherent reconstruction of the complex pre-eruptive dynamics and eruption timescales of Astroni volcano located in the eastern sector of Campi Flegrei caldera. The Astroni volcano is an important case study for investigating plumbing system processes and dynamics at Campi Flegrei caldera because it produced the most recent (ca. 4 ka ago) Plinian eruption within the caldera (Astroni 6); current long-term forecasting studies postulate that a similar sized event in this location is a probable future scenario. Geothermobarometric results indicate interaction between an evolved, shallow magma chamber, and a less evolved, deeper pocket of magma, in agreement with previous studies focused on the Astroni 6 eruption products. In addition, a range of textural and trace element zoning patterns point to a complex evolution of both magmas prior to their subsequent interaction. High-resolution trace element crystal maps reveal discrete zonations in compatible elements. These zonations, combined with knowledge of K-feldspar growth rates, highlight a recharge event in the shallow plumbing system a few hours to days before the Astroni 6 eruption.

Tracking plumbing system dynamics at the Campi Flegrei caldera, Italy: High-resolution trace element mapping of the Astroni crystal cargo

ASTBURY, REBECCA LOUISE;Petrelli, Maurizio;Perugini, Diego
2018

Abstract

The Campi Flegrei caldera (southern Italy) is one of the most hazardous volcanic systems on Earth, having produced >60 eruptions in the past 15 ka. The caldera remains active and its potential for future eruptions is high, posing a danger to the dense population living nearby. Despite this, our understanding of pre-eruptive processes and the architecture of the sub-volcanic system are poorly constrained. Here, we combine established petrological techniques, geothermobarometric evaluation, and high-resolution trace element crystal mapping, to present a multifaceted, coherent reconstruction of the complex pre-eruptive dynamics and eruption timescales of Astroni volcano located in the eastern sector of Campi Flegrei caldera. The Astroni volcano is an important case study for investigating plumbing system processes and dynamics at Campi Flegrei caldera because it produced the most recent (ca. 4 ka ago) Plinian eruption within the caldera (Astroni 6); current long-term forecasting studies postulate that a similar sized event in this location is a probable future scenario. Geothermobarometric results indicate interaction between an evolved, shallow magma chamber, and a less evolved, deeper pocket of magma, in agreement with previous studies focused on the Astroni 6 eruption products. In addition, a range of textural and trace element zoning patterns point to a complex evolution of both magmas prior to their subsequent interaction. High-resolution trace element crystal maps reveal discrete zonations in compatible elements. These zonations, combined with knowledge of K-feldspar growth rates, highlight a recharge event in the shallow plumbing system a few hours to days before the Astroni 6 eruption.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1436829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact