Specific microRNAs (miRs), including the “angio-miR-126” and the “inflamma-miR-146a-5p,” have been proposed as biomarkers and even therapeutic targets of obesity-associated metabolic diseases. Physical activity, a key measure of prevention for obesity and its complications, is reported to influence the expression of these miRs. In this study, we investigate whether a physical activity program proven to improve metabolic parameters in obese patients can correct the circulating levels of these miRs. Plasma miR-126 and miR-146a-5p were measured in a cohort of obese patients (n = 31, 16F + 15M) before and after the 3-month physical activity program of the CURIAMO trial (registration number for clinical trials: ACTRN12611000255987) and in 37 lean controls (24F + 13M). miR-146a-5p, but not miR-126, was significantly increased in obese patients as compared with lean controls and decreased in approximately two-thirds of the participants post-intervention with a response that positively correlated with pre-intervention levels of this miR. Waist circumference, the inflammatory cytokine IL-8 and lipid parameters, principally total cholesterol, showed the strongest correlation with both the baseline levels and post-intervention correction of miR-146a-5p. Post-hoc analysis of experimental data supports the use of miR-146a-5p as a biomarker and predictor of the clinical response to physical activity in obese patients. Furthermore, miR-146a-5p expression was confirmed to increase together with that of the inflammatory genes TLR4, NF-κB, IL-6, and TNF-α in LPS-stimulated human mononuclear leukocytes. In conclusion, the inflamma-miR-146a-5p can serve as a personalized predictor of clinical outcome in obese patients entering physical activity weight-reduction programs. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology

Physical Activity Modulates the Overexpression of the Inflammatory miR-146a-5p in Obese Patients

Russo, Angelo;Bartolini, Desireé;Torquato, Pierangelo;Piroddi, Marta;Cruciani, Gabriele;De Feo, Pierpaolo;Galli, Francesco
2018

Abstract

Specific microRNAs (miRs), including the “angio-miR-126” and the “inflamma-miR-146a-5p,” have been proposed as biomarkers and even therapeutic targets of obesity-associated metabolic diseases. Physical activity, a key measure of prevention for obesity and its complications, is reported to influence the expression of these miRs. In this study, we investigate whether a physical activity program proven to improve metabolic parameters in obese patients can correct the circulating levels of these miRs. Plasma miR-126 and miR-146a-5p were measured in a cohort of obese patients (n = 31, 16F + 15M) before and after the 3-month physical activity program of the CURIAMO trial (registration number for clinical trials: ACTRN12611000255987) and in 37 lean controls (24F + 13M). miR-146a-5p, but not miR-126, was significantly increased in obese patients as compared with lean controls and decreased in approximately two-thirds of the participants post-intervention with a response that positively correlated with pre-intervention levels of this miR. Waist circumference, the inflammatory cytokine IL-8 and lipid parameters, principally total cholesterol, showed the strongest correlation with both the baseline levels and post-intervention correction of miR-146a-5p. Post-hoc analysis of experimental data supports the use of miR-146a-5p as a biomarker and predictor of the clinical response to physical activity in obese patients. Furthermore, miR-146a-5p expression was confirmed to increase together with that of the inflammatory genes TLR4, NF-κB, IL-6, and TNF-α in LPS-stimulated human mononuclear leukocytes. In conclusion, the inflamma-miR-146a-5p can serve as a personalized predictor of clinical outcome in obese patients entering physical activity weight-reduction programs. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1437408
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact