This study investigated the catalytic behavior of two different types of materials: (i) algal biochar and (ii) 15 wt% Ni impregnated on SBA-15 support (Ni/SBA-15), in the thermochemical decomposition of Venice lagoon brown marine algae (Sargassum). First, non-catalytic pyrolysis tests were conducted in a temperature range of 400–800 °C in a dual-bed slow pyrolysis reactor. The optimum temperature for maximized liquid yield was at the temperature of 700 °C. Biochar catalyst exhibited excellent catalytic activity toward producing aromatic compounds via Diels-Alder-type reactions. However, Ni/SBA-15, because of interconnected pores provided easy passage for reactant and product during the catalytic pyrolysis process and resulted in an improvement in total gas yield (25.87 mmol/g Sargassum) and hydrogen-rich gas production (8.54 mmol/g Sargassum). The catalytic performances of both biochar and Ni/SBA-15 catalysts were compared to biochar-based catalysts derived from red and green macroalgae. High specific surface area, large pore volume, highly ordered pore structure, and narrow pore size distribution make SBA-15 a promising catalyst support in pyrolysis of biomass. © 2018 Hydrogen Energy Publications LLC.
Catalytic conversion of Venice lagoon brown marine algae for producing hydrogen-rich gas and valuable biochemical using algal biochar and Ni/SBA-15 catalyst
Norouzi, O
Investigation
;Di Maria, FSupervision
;Di Michele, AMembro del Collaboration Group
2018
Abstract
This study investigated the catalytic behavior of two different types of materials: (i) algal biochar and (ii) 15 wt% Ni impregnated on SBA-15 support (Ni/SBA-15), in the thermochemical decomposition of Venice lagoon brown marine algae (Sargassum). First, non-catalytic pyrolysis tests were conducted in a temperature range of 400–800 °C in a dual-bed slow pyrolysis reactor. The optimum temperature for maximized liquid yield was at the temperature of 700 °C. Biochar catalyst exhibited excellent catalytic activity toward producing aromatic compounds via Diels-Alder-type reactions. However, Ni/SBA-15, because of interconnected pores provided easy passage for reactant and product during the catalytic pyrolysis process and resulted in an improvement in total gas yield (25.87 mmol/g Sargassum) and hydrogen-rich gas production (8.54 mmol/g Sargassum). The catalytic performances of both biochar and Ni/SBA-15 catalysts were compared to biochar-based catalysts derived from red and green macroalgae. High specific surface area, large pore volume, highly ordered pore structure, and narrow pore size distribution make SBA-15 a promising catalyst support in pyrolysis of biomass. © 2018 Hydrogen Energy Publications LLC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.