In this study, Fe3O4 magnetic nanoparticles (MNPs) were synthesized (B-MNP) and then modified with SiO2 to form Fe3O4/SiO2 core/shell MNPs. The Fe3O4/SiO2 MNPs were chemically functionalized with chitosan so as to gain Fe3O4/SiO2/Chitosan (CH-MNP). The CH-MNP was functionalized with a macromolecule containing imide and phenylalanine precursors to gain Fe3O4/SiO2/Chitosan/imide/phenylalanine based MNPs (CH-IM-MNP). The differences in chemical structures of the synthesized MNPs were quantified by FTIR and TGA analyses, where grafting ratios of ca. 6 and 28% were calculated for CH-MNP and CH-IM-MNP nanoparticles, respectively. Nanocomposites were prepared by addition of very low (0.1 wt.% nanoparticle based on 100 parts by weight of epoxy) to epoxy/amine systems. Curing behavior of the blank and MNPs-incorporated nanocomposites were studied by nonisothermal DSC analyses varying heating rate, which allowed for giving useful insights into the effect of chemical surface functionalization of MNPs on the curing potential/behavior of epoxy/amine systems. Analysis of fracture surface of the blank and MNPs-incorporated systems using SEM micrographs revealed a very high potential of cure when CH-IM-MNP added to epoxy/amine formulation.

Curing behavior of epoxy/Fe3O4nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers

Puglia, Debora;
2018

Abstract

In this study, Fe3O4 magnetic nanoparticles (MNPs) were synthesized (B-MNP) and then modified with SiO2 to form Fe3O4/SiO2 core/shell MNPs. The Fe3O4/SiO2 MNPs were chemically functionalized with chitosan so as to gain Fe3O4/SiO2/Chitosan (CH-MNP). The CH-MNP was functionalized with a macromolecule containing imide and phenylalanine precursors to gain Fe3O4/SiO2/Chitosan/imide/phenylalanine based MNPs (CH-IM-MNP). The differences in chemical structures of the synthesized MNPs were quantified by FTIR and TGA analyses, where grafting ratios of ca. 6 and 28% were calculated for CH-MNP and CH-IM-MNP nanoparticles, respectively. Nanocomposites were prepared by addition of very low (0.1 wt.% nanoparticle based on 100 parts by weight of epoxy) to epoxy/amine systems. Curing behavior of the blank and MNPs-incorporated nanocomposites were studied by nonisothermal DSC analyses varying heating rate, which allowed for giving useful insights into the effect of chemical surface functionalization of MNPs on the curing potential/behavior of epoxy/amine systems. Analysis of fracture surface of the blank and MNPs-incorporated systems using SEM micrographs revealed a very high potential of cure when CH-IM-MNP added to epoxy/amine formulation.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1438203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 88
social impact