In order to fully exploit the properties of diamond in electronic semiconductor applications, standard design and verification tools should be adopted, following the conventional TCAD design flow. However, diamond is not included in the material's library of commercial TCAD simulation tools, due to the novelty of using this material in electronics. To this end the TCAD tools capabilities have been enhanced by developing an innovative numerical model for the simulations of advanced diamond devices conceived for particle detection in High-Energy Physics (HEP) experiments. This work focuses on the parameterization of the TCAD numerical model for polycrystalline diamond, on its validation against experimental data and on its application as a predictive tool for the electrical behavior of commercial polycrystalline diamond and Diamond-on-Iridium detectors.

A TCAD modeling approach for diamond particle detectors: Simulation and test

Morozzi, Arianna;Passeri, Daniele
2017

Abstract

In order to fully exploit the properties of diamond in electronic semiconductor applications, standard design and verification tools should be adopted, following the conventional TCAD design flow. However, diamond is not included in the material's library of commercial TCAD simulation tools, due to the novelty of using this material in electronics. To this end the TCAD tools capabilities have been enhanced by developing an innovative numerical model for the simulations of advanced diamond devices conceived for particle detection in High-Energy Physics (HEP) experiments. This work focuses on the parameterization of the TCAD numerical model for polycrystalline diamond, on its validation against experimental data and on its application as a predictive tool for the electrical behavior of commercial polycrystalline diamond and Diamond-on-Iridium detectors.
2017
9781509065073
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1438255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact