Water pollution is becoming alarming since thousands contaminants are dispersed in the aquatic environments, and agricultural practices, for the massive use of pesticides, are contributing to exacerbating this problem. In this context, a research aimed at investigating the ability of duckweed (Lemna minor), a free-floating aquatic species widespread throughout the world, to remediate water polluted with five different concentrations of a herbicide - terbuthylazine (TBA) - was carried out. In addition, duckweed was treated with a plant biostimulant and a safener with the aim of increasing the plant's capacity to tolerate and remove the TBA from the water. The results evidenced that the herbicide affected the duckweed already at the lower concentrations, reducing its capacity to proliferate and the area of its fronds. On the contrary, when the TBA treatments were performed in combination with the biostimulant or the safener the average area of the fronds was affected of lesser extents, compared to the plants treated with the herbicide only. Antioxidant enzymes, namely ascorbate peroxidases (APX) and catalases (CAT), were investigated and it was found that the biostimulated and safened duckweed showed increased activities of these enzymes, compared to the plants treated with TBA only. At last, some phytofiltration experiments were planned. The biostimulated and safened duckweed removed more TBA from polluted water than the plants treated with the herbicide alone. In conclusion, this research showed that duckweed is suitable for cleaning water polluted with TBA and this potential can be successfully improved by treating the species with a biostimulant or a safener.

The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine

Ivan Panfili;Maria Luce Bartucca;Daniele Del Buono
2019

Abstract

Water pollution is becoming alarming since thousands contaminants are dispersed in the aquatic environments, and agricultural practices, for the massive use of pesticides, are contributing to exacerbating this problem. In this context, a research aimed at investigating the ability of duckweed (Lemna minor), a free-floating aquatic species widespread throughout the world, to remediate water polluted with five different concentrations of a herbicide - terbuthylazine (TBA) - was carried out. In addition, duckweed was treated with a plant biostimulant and a safener with the aim of increasing the plant's capacity to tolerate and remove the TBA from the water. The results evidenced that the herbicide affected the duckweed already at the lower concentrations, reducing its capacity to proliferate and the area of its fronds. On the contrary, when the TBA treatments were performed in combination with the biostimulant or the safener the average area of the fronds was affected of lesser extents, compared to the plants treated with the herbicide only. Antioxidant enzymes, namely ascorbate peroxidases (APX) and catalases (CAT), were investigated and it was found that the biostimulated and safened duckweed showed increased activities of these enzymes, compared to the plants treated with TBA only. At last, some phytofiltration experiments were planned. The biostimulated and safened duckweed removed more TBA from polluted water than the plants treated with the herbicide alone. In conclusion, this research showed that duckweed is suitable for cleaning water polluted with TBA and this potential can be successfully improved by treating the species with a biostimulant or a safener.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1438328
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact